scispace - formally typeset
Search or ask a question
Topic

Multiplex polymerase chain reaction

About: Multiplex polymerase chain reaction is a research topic. Over the lifetime, 6409 publications have been published within this topic receiving 221244 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed a simple approach to assess DNA fragmentation in minute clinical samples of widely different origin and the likelihood of success of degradation-tolerant whole genome amplification (restriction and circularization-aided rolling circle amplification, RCA-RCA) and subsequent polymerase chain reaction (PCR).

63 citations

Journal ArticleDOI
TL;DR: A multiplex PCR was sensitive and specific enough to discriminate the various types of tet genes, even multiple tet genes in an individual resistant isolate, by the different sizes of the resulting PCR products.

63 citations

Journal ArticleDOI
TL;DR: Species-specific internal ITS primers that amplify polymerase chain reaction (PCR) products of different lengths were selected to distinguish the morphologically similar ectomycorrhizal fungi T. melanosporum, T. brumale and T. indicum by aligning their internal transcribed spacer sequences and taking into account any incidence of intraspecific variability.
Abstract: Species-specific internal ITS primers that amplify polymerase chain reaction (PCR) products of different lengths were selected to distinguish the morphologically similar ectomycorrhizal fungi T. melanosporum, T. brumale and T. indicum by aligning their internal transcribed spacer sequences and taking into account any incidence of intraspecific variability. In multiplex PCR experiments, the species-specific primers yielded the expected amplicons on template DNA isolated from the above mentioned species, while there was no amplification in PCR reactions carried out on fungal DNA from competing truffle species and host plants.

63 citations

Journal ArticleDOI
TL;DR: A multiplex polymerase chain reaction (PCR) technique that can be used to identify microcystin contamination in dietary supplements produced for human consumption and was found to be useful for detecting the presence of toxigenic Microcystis in all dietary supplementsproduced from the nontoxic cyanobacterium Aphanizomenon flos-aquae.
Abstract: The production of food supplements containing cyanobacteria is a growing worldwide industry. While there have been several reports of health benefits that can be gained from the consumption of these supplements, there have also been a growing number of studies showing the presence of toxins some of which (for example microcystins) are known to affect human health. In this paper, we report a multiplex polymerase chain reaction (PCR) technique that can be used to identify microcystin contamination in dietary supplements produced for human consumption. This method involves a PCR reaction containing three primer pairs, the first of which is used to amplify a 220-bp fragment of 16s rDNA specific to Microcystis, the most common microcystin-producing cyanobacterium. The second primer pair is used to amplify a 300-bp fragment of the mcyA gene, linked to microcystin biosynthesis in Anabaena, Microcystis, and Planktothrix. A third primer pair, used as a positive control, results in the amplification of a 650-bp fragment from the phycocyanin operon common to all cyanobacteria. This technique was found to be useful for detecting the presence of toxigenic Microcystis in all dietary supplements produced from the nontoxic cyanobacterium Aphanizomenon flos-aquae.

63 citations

Journal ArticleDOI
TL;DR: The Austrian Red Cross has developed a genotyping assay as an alternative approach for high throughput RBC typing that will help blood centres screen a significant number of donors for a variety of antigens serologically.
Abstract: Background and Objectives One to two per cent of patients in need of red cell transfusion carry irregular antibodies to red blood cell (RBC) antigens and have to be supplied with specially selected blood units. To be able to respond to those requests, blood centres have to screen a significant number of donors for a variety of antigens serologically, which is a costly and through the shortage of reagents, also limited procedure. To make this procedure more efficient, the Austrian Red Cross has developed a genotyping assay as an alternative approach for high throughput RBC typing. Materials and Methods A multiplex polymerase chain reaction (PCR) assay was designed for typing 35 RBC antigens in six reaction mixes. The assay includes both common as well as high-frequency-alleles: MNS1, MNS2, MNS3 and MNS4; LU1, LU2, LU8 and LU14; KEL1, KEL2, KEL3, KEL4, KEL6, KEL7, KEL11, KEL17 and KEL21; FY1, FY2, FYBWK and FY0 (FYBES); JK1 and JK2; DI1, DI2, DI3 and DI4; YT1 and YT2; DO1 and DO2; CO1 and CO2; IN1 and IN2. The assay was validated using 370 selected serologically typed samples. Subsequently 6000 individuals were screened to identify high frequency antigen (HFA)-negative donors and to facilitate the search for compatible blood for alloimmunized patients. Results All controls showed complete concordance for the tested markers. The screening of 6000 donors revealed 57 new HFA-negative donors and the blood group database was extended by approximately 210 000 results. Conclusion The study shows that in practice, this high-throughput genotyping assay is feasible, fast and provides reliable results. Compared to serological testing, this molecular approach is also very cost-efficient.

63 citations


Network Information
Related Topics (5)
Locus (genetics)
42.7K papers, 2M citations
75% related
Gene
211.7K papers, 10.3M citations
70% related
Antigen
170.2K papers, 6.9M citations
68% related
Plasmid
44.3K papers, 1.9M citations
68% related
Complementary DNA
55.3K papers, 2.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023275
2022448
2021172
2020176
2019221
2018220