scispace - formally typeset
Search or ask a question
Topic

Multiplex polymerase chain reaction

About: Multiplex polymerase chain reaction is a research topic. Over the lifetime, 6409 publications have been published within this topic receiving 221244 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A multiplex polymerase chain reaction (PCR) system was developed for the simultaneous detection of target sequences in genetically modified soybean and maize and high specificity and sensitivity were obtained.

58 citations

Journal ArticleDOI
TL;DR: This work has used multiplex polymerase chain reaction and high-resolution polyacrylamide gel electrophoresis to detect RB1 gene deletions as small as one base pair in the DNA of peripheral blood cells in patients with hereditary retinoblastoma.
Abstract: Loss of function of both copies of the RB1 gene is a causal event in the development of retinoblastoma. The predisposition to this tumor can be inherited as an autosomal dominant trait. Direct detection of the genetic defect is important for presymptomatic DNA diagnosis and genetic counseling in families with hereditary retinoblastoma. We have used multiplex polymerase chain reaction and high-resolution polyacrylamide gel electrophoresis to detect RB1 gene deletions as small as one base pair. By using three independent sets of amplification reactions, which cover 26% of the RB1 gene coding region, we identified RB1 gene deletions in the DNA of peripheral blood cells in 3 out of 24 (12.5%) unrelated patients with hereditary retinoblastoma. In one case, formalin-fixed paraffin-embedded tumor material was also used to detect the mutation. Sequencing of the mutated alleles revealed deletions of 1, 3 and 10 base pairs. Each deleted region was flanked by direct repeats.

58 citations

Journal ArticleDOI
TL;DR: Gel electrophoretic analysis as well as the use of an octadecamer with a mismatch closer to the 5'-end in the mutational assay reveals that degradation of the oligonucleotide is not completely blocked but only slowed down.
Abstract: By use of a mutational assay employing an octadecamer with a mismatch in the center, it is shown that the introduction of phosphorothioate groups near the 5'-end can protect the mismatch against degradation by the 5'-3'-exonuclease activity of Escherichia coli DNA polymerase I. An optimal level of protection is achieved when the phosphorothioate groups are incorporated in at least the second and third internucleotidic linkages from the 5'-end. However, gel electrophoretic analysis as well as the use of an octadecamer with a mismatch closer to the 5'-end in the mutational assay reveals that degradation of the oligonucleotide is not completely blocked but only slowed down.

58 citations

Journal ArticleDOI
TL;DR: The mPCR assays are simple to perform, and they should be useful for diagnosis of porcine colibacillosis, including the genotypic characterization of E. coli isolates from pigs with diarrhea or edema disease.
Abstract: A multiplex polymerase chain reaction (mPCR) assay was developed for detection and characterization of pathogenic Escherichia coli that cause diarrhea and edema disease in swine. The mPCR assay was designed as a single reaction for detecting 5 different adhesins (K88, K99, 987P, F41, and F18), 3 enterotoxins (LT, STaP, and STb), and the Shiga toxin (Stx2e) associated with porcine pathogenic E. coli. The specificity of the mPCR assay was evaluated by comparison with results from previous analysis of 100 porcine isolates characterized by colony blot hybridization with DNA probes for the 5 adhesins and 4 toxin genes. There was complete agreement between the 2 methods. The mPCR assay for E. coli pathogens isolated from swine was further evaluated by examination of strains containing virulence factors that are known to have different antigenic subtypes or DNA sequence variations. It was found that the mPCR assays targeting genes encoding for K88 and F18 amplified products with the appropriate sizes from strains containing genes for different K88 and F18 antigenic subtypes; mPCR assays targeting the gene encoding for STaP amplified product from only STaP-positive but not STaH-positive isolates; and mPCR assays targeting the gene encoding for the Stx2 amplified products from only Stx2-positive and not Stx1-positive isolates. Similarly, mPCR assays targeting the gene encoding for LTI did not produce the appropriate product from strains containing genes for LTII. The mPCR assays are simple to perform, and they should be useful for diagnosis of porcine colibacillosis, including the genotypic characterization of E. coli isolates from pigs with diarrhea or edema disease.

58 citations

Journal ArticleDOI
TL;DR: This technique was successfully used to develop microsatellite markers in several plant species by combining two techniques in the same PCR reaction: custom-labeling of primers by the investigator and multiplexing multiple primers together in thesame reaction.
Abstract: Premise of the study: Development of genetic markers can be costly and time-consuming, especially when multiple primer pairs are fluorescently labeled. This step was streamlined by combining two techniques in the same PCR reaction: (1) custom-labeling of primers by the investigator and (2) multiplexing multiple primers together in the same reaction. Methods and Results: This technique was successfully used to develop microsatellite markers in several plant species. Microsatellites amplified with this multiplexing process were identical to those generated from PCR using individual primer pairs and with traditional methods using a priori labeled fluorescent primers. Tests of PCR cycling programs revealed that conditions recommended for the commercial kit generated stronger fragment peaks than the previously recommended cycling protocol. Conclusions: This technique is an efficient and economical way to fluorescently label multiple microsatellite primers in the same reaction. It is also applicable to other ma...

57 citations


Network Information
Related Topics (5)
Locus (genetics)
42.7K papers, 2M citations
75% related
Gene
211.7K papers, 10.3M citations
70% related
Antigen
170.2K papers, 6.9M citations
68% related
Plasmid
44.3K papers, 1.9M citations
68% related
Complementary DNA
55.3K papers, 2.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023275
2022448
2021172
2020176
2019221
2018220