scispace - formally typeset
Search or ask a question
Topic

Multiplex polymerase chain reaction

About: Multiplex polymerase chain reaction is a research topic. Over the lifetime, 6409 publications have been published within this topic receiving 221244 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A set of single-tube assays allows rapid and reproducible genotyping of the majority of CYP2D6 poor metabolizer mutations and confirmed that re-analysis of sequenced genomic DNA by tetra-primer PCR analysis always showed identical results.
Abstract: Background: Interindividual differences in CYP2D6 activity range from total absence of metabolism of certain drugs to ultrafast metabolism and can produce adverse effects or lack of therapeutic effect under standard therapy. Several mutations have been described in the CYP2D6 gene that abolish CYP2D6 activity. However, four mutations explain the majority of the poor metabolizers. We describe four single-tube assays to detect these mutations. Methods: Three tetra-primer PCR assays were developed to detect the mutations in the CYP2D6*3 , *4 , and *6 alleles. In these single-tube assays, the CYP2D6 locus is amplified directly, followed by the allele-specific amplification on this new template. In addition, a multiplex long PCR was developed to genotype the CYP2D6*5 allele. Two long PCR amplifications for detection of the deletion of CYP2D6 ( *5 ) and for detection of the CYP2D6 gene region were combined in one tube. Results: Analysis of 114 alleles showed no CYP2D6*3 allele, and allele frequencies of 28.1% for CYP2D6*4 , 2.6% for CYP2D6*5 , and 0.9% for CYP2D6*6 . Re-analysis of the DNA samples by restriction fragment length polymorphism and sequencing analysis confirmed these results. Furthermore, re-analysis of sequenced genomic DNA by tetra-primer PCR analysis (7–11 times) always showed identical results. Conclusions: Our set of single-tube assays allows rapid and reproducible genotyping of the majority of CYP2D6 poor metabolizers.

168 citations

Journal ArticleDOI
TL;DR: The aim was to develop a simple, reliable, and economical method for detecting epidemiologically important serotypes present in the proposed 11-valent conjugate vaccine by using multiplex PCR for the analysis of pneumococci.
Abstract: The capsule is a major virulence factor of pneumococci, and it was shown that some capsular variants are associated with antimicrobial resistance and certain types of disease. Moreover, pneumococcal capsular typing has received renewed interest since the availability of conjugate vaccines, which include serotypes frequently associated with pediatric disease. Our aim was to develop a simple, reliable, and economical method for detecting epidemiologically important serotypes present in the proposed 11-valent conjugate vaccine. We designed primers based on the sequences available for the capsular types 1, 3, 4, 6B, 14, 18C, 19F, 19A, and 23F and combined them into seven multiplex PCRs. The method involves streamlined DNA template preparation and agarose gel electrophoresis to analyze the amplification products. A total of 446 pneumococci selected from among isolates colonizing the nasopharynx of children attending day care centers in Lisbon, Portugal, were typed both by conventional immunological techniques and by multiplex PCR. Capsular types identified by the PCR method invariably produced results concordant with the conventional serotyping technique. Even when the method presented does not fully type an isolate, the PCR data can guide the experimenter when using immunological serotyping. Multiplex PCR for the analysis of pneumococci provides an accurate, expeditious, and cost-effective way of reducing the number of strains that have to be serotyped by conventional immunological techniques.

167 citations

Journal ArticleDOI
TL;DR: The portfolio of diagnostic assays used in the GEMS study can be broadly applied in developing countries seeking robust cost-effective methods for enteric pathogen detection.
Abstract: To understand the etiology of moderate-to-severe diarrhea among children in high mortality areas of sub-Saharan Africa and South Asia, we performed a comprehensive case/control study of children aged <5 years at 7 sites. Each site employed an identical case/control study design and each utilized a uniform comprehensive set of microbiological assays to identify the likely bacterial, viral and protozoal etiologies. The selected assays effected a balanced consideration of cost, robustness and performance, and all assays were performed at the study sites. Identification of bacterial pathogens employed streamlined conventional bacteriologic biochemical and serological algorithms. Diarrheagenic Escherichia coli were identified by application of a multiplex polymerase chain reaction assay for enterotoxigenic, enteroaggregative, and enteropathogenic E. coli. Rotavirus, adenovirus, Entamoeba histolytica, Giardia enterica, and Cryptosporidium species were detected by commercially available enzyme immunoassays on stool samples. Samples positive for adenovirus were further evaluated for adenovirus serotypes 40 and 41. We developed a novel multiplex assay to detect norovirus (types 1 and 2), astrovirus, and sapovirus. The portfolio of diagnostic assays used in the GEMS study can be broadly applied in developing countries seeking robust cost-effective methods for enteric pathogen detection.

166 citations

Journal ArticleDOI
TL;DR: A real-time fluorescence-based multiplex PCR for the detection of all six of the currently recognized classes of diarrheagenic E. coli strains and the single false negative was a DAEC strain.
Abstract: Diarrheagenic Escherichia coli strains are important causes of diarrhea in children from the developing world and are now being recognized as emerging enteropathogens in the developed world. Current methods of detection are too expensive and labor-intensive for routine detection of these organisms to be practical. We developed a real-time fluorescence-based multiplex PCR for the detection of all six of the currently recognized classes of diarrheagenic E. coli. The primers were designed to specifically amplify eight different virulence genes in the same reaction: aggR for enteroaggregative E. coli, stIa/stIb and lt for enterotoxigenic E. coli, eaeA for enteropathogenic E. coli and Shiga toxin-producing E. coli (STEC), stx1 and stx2 for STEC, ipaH for enteroinvasive E. coli, and daaD for diffusely adherent E. coli (DAEC). Eighty-nine of ninety diarrheagenic E. coli and 36/36 nonpathogenic E. coli strains were correctly identified using this approach (specificity, 1.00; sensitivity, 0.99). The single false negative was a DAEC strain. The total time between preparation of DNA from E. coli colonies on agar plates and completion of PCR and melting-curve analysis was less than 90 min. The cost of materials was low. Melting-point analysis of real-time multiplex PCR is a rapid, sensitive, specific, and inexpensive method for detection of diarrheagenic E. coli.

165 citations

Journal ArticleDOI
TL;DR: MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays and provides a virtual electrophotogram to help users choose the best PSC.
Abstract: Background Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer) in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility.

165 citations


Network Information
Related Topics (5)
Locus (genetics)
42.7K papers, 2M citations
75% related
Gene
211.7K papers, 10.3M citations
70% related
Antigen
170.2K papers, 6.9M citations
68% related
Plasmid
44.3K papers, 1.9M citations
68% related
Complementary DNA
55.3K papers, 2.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023275
2022448
2021172
2020176
2019221
2018220