scispace - formally typeset
Search or ask a question
Topic

Multiplex polymerase chain reaction

About: Multiplex polymerase chain reaction is a research topic. Over the lifetime, 6409 publications have been published within this topic receiving 221244 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The new assay is able to detect both GI and GII in one reaction and brings a cost reduction of approximately 40% compared to separate reactions for GI andGII.

115 citations

Book ChapterDOI
TL;DR: Not all primer selection criteria need be met in order to synthesize a clean, specific product, since the adjustment of PCR conditions (such as composition of the reaction mixture, temperature, and duration of PCR steps) may considerably improve the reaction specificity.
Abstract: One of the most important factors affecting the quality of polymerase chain reaction (PCR) is the choice of primers. Several rules should be observed when designing primers and, in general, the more DNA sequence information available, the better the chance of finding an "ideal" primer pair. Fortunately, not all primer selection criteria need be met in order to synthesize a clean, specific product, since the adjustment of PCR conditions (such as composition of the reaction mixture, temperature, and duration of PCR steps) may considerably improve the reaction specificity. Amplification of 200-400-bp DNA is the most efficient and, in these cases, one may design efficient primers simply by following a few simple rules described in this chapter. It is more difficult to choose primers for efficient amplification of longer DNA fragments, and use of an appropriate primer analysis software is worthwhile.

115 citations

Journal ArticleDOI
TL;DR: A multiplex PCR method was developed to simultaneously amplify four genes, florfenicol (flo(st), virulence (spvC), invasion (invA), and integron (int) from S. typhimurium DT104, useful for rapid identification of ACSSuT-type DT104 strains from clinical, food and environmental samples.
Abstract: Salmonella typhimurium definitive type 104 (DT104) is a virulent pathogen for humans and animals with many strains having multiple drug resistance characteristics. The organism typically carries resistance to ampicillin, chloramphenicol, florfenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT-resistant). A multiplex PCR method was developed to simultaneously amplify four genes, florfenicol (flost), virulence (spvC), invasion (invA), and integron (int) from S. typhimurium DT104 (ACSSuT-type). Twenty-two ACSSuT-resistant DT104 isolates in our collection gave 100% positive reactions to this PCR assay by amplifying 584-, 392-, 321- and 265-bp PCR products, using primers specific to the respective target genes. One Salmonella strain DT23, ACSSuT-resistant, phage type 711 failed to amplify the 584-bp fragment, indicating that this method is specific for DT104-type ACSSuT-resistant S. typhimurium strains. One clinical and one bovine ASSuT-resistant strains that were sensitive to chloramphenicol and florfenicol did not yield a 584-bp fragment, indicating the absence of the flost gene. This method will be useful for rapid identification of ACSSuT-type DT104 strains from clinical, food and environmental samples.

114 citations

Journal ArticleDOI
TL;DR: By comparing PCR patterns of unidentified Leishmania isolates with those obtained from reference strains it was possible to identify these isolates at the species level and the information of the amplification patterns was used for the construction of phylogenetic trees to measure the genetic relatedness within the genus LeishMania.

114 citations

Patent
Anthony P. Shuber1
06 Jun 1996
TL;DR: In this article, the authors presented primers that allow simultaneous amplification of multiple DNA target sequences present in a DNA sample, and methods for high-throughput genetic screening are also provided.
Abstract: The present invention provides primers that allow simultaneous amplification of multiple DNA target sequences present in a DNA sample. Further provided are methods for detecting multiple defined target DNA sequences in a DNA sample. Methods for high-throughput genetic screening are also provided. In yet another aspect, the present invention provides single-stranded oligonucleotide DNA primers for amplification of a target DNA sequence in a multiplex polymerase chain reaction.

114 citations


Network Information
Related Topics (5)
Locus (genetics)
42.7K papers, 2M citations
75% related
Gene
211.7K papers, 10.3M citations
70% related
Antigen
170.2K papers, 6.9M citations
68% related
Plasmid
44.3K papers, 1.9M citations
68% related
Complementary DNA
55.3K papers, 2.7M citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023275
2022448
2021172
2020176
2019221
2018220