scispace - formally typeset
Search or ask a question
Topic

Multiresolution analysis

About: Multiresolution analysis is a research topic. Over the lifetime, 4032 publications have been published within this topic receiving 140743 citations. The topic is also known as: Multiresolution analysis, MRA.


Papers
More filters
Journal ArticleDOI
TL;DR: Fusion tests at the full scale reveal that an accurate and reliable Pan-sharpening, little affected by local inaccuracies even in the presence of complex and detailed urban landscapes, is achieved by the proposed curvelet-based fusion method.

671 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare two general and formal solutions to the problem of fusion of multispectral images with high-resolution panchromatic observations, and compare the results on SPOT data.
Abstract: This paper compares two general and formal solutions to the problem of fusion of multispectral images with high-resolution panchromatic observations. The former exploits the undecimated discrete wavelet transform, which is an octave bandpass representation achieved from a conventional discrete wavelet transform by omitting all decimators and upsampling the wavelet filter bank. The latter relies on the generalized Laplacian pyramid, which is another oversampled structure obtained by recursively subtracting from an image an expanded decimated lowpass version. Both the methods selectively perform spatial-frequencies spectrum substitution from an image to another. In both schemes, context dependency is exploited by thresholding the local correlation coefficient between the images to be merged, to avoid injection of spatial details that are not likely to occur in the target image. Unlike other multiscale fusion schemes, both the present decompositions are not critically subsampled, thus avoiding possible impairments in the fused images, due to missing cancellation of aliasing terms. Results are presented and discussed on SPOT data.

662 citations

Book
30 Apr 1998
TL;DR: In this paper, the Haar basis wavelet system is used for multiresolution analysis and wavelet thresholding, and a cascade algorithm is used to transform wavelets into a wavelet transform.
Abstract: 1 Wavelets.- 1.1 What can wavelets offer?.- 1.2 General remarks.- 1.3 Data compression.- 1.4 Local adaptivity.- 1.5 Nonlinear smoothing properties.- 1.6 Synopsis.- 2 The Haar basis wavelet system.- 3 The idea of multiresolution analysis.- 3.1 Multiresolution analysis.- 3.2 Wavelet system construction.- 3.3 An example.- 4 Some facts from Fourier analysis.- 5 Basic relations of wavelet theory.- 5.1 When do we have a wavelet expansion?.- 5.2 How to construct mothers from a father.- 5.3 Additional remarks.- 6 Construction of wavelet bases.- 6.1 Construction starting from Riesz bases.- 6.2 Construction starting from m0.- 7 Compactly supported wavelets.- 7.1 Daubechies' construction.- 7.2 Coiflets.- 7.3 Symmlets.- 8 Wavelets and Approximation.- 8.1 Introduction.- 8.2 Sobolev Spaces.- 8.3 Approximation kernels.- 8.4 Approximation theorem in Sobolev spaces.- 8.5 Periodic kernels and projection operators.- 8.6 Moment condition for projection kernels.- 8.7 Moment condition in the wavelet case.- 9 Wavelets and Besov Spaces.- 9.1 Introduction.- 9.2 Besov spaces.- 9.3 Littlewood-Paley decomposition.- 9.4 Approximation theorem in Besov spaces.- 9.5 Wavelets and approximation in Besov spaces.- 10 Statistical estimation using wavelets.- 10.1 Introduction.- 10.2 Linear wavelet density estimation.- 10.3 Soft and hard thresholding.- 10.4 Linear versus nonlinear wavelet density estimation.- 10.5 Asymptotic properties of wavelet thresholding estimates.- 10.6 Some real data examples.- 10.7 Comparison with kernel estimates.- 10.8 Regression estimation.- 10.9 Other statistical models.- 11 Wavelet thresholding and adaptation.- 11.1 Introduction.- 11.2 Different forms of wavelet thresholding.- 11.3 Adaptivity properties of wavelet estimates.- 11.4 Thresholding in sequence space.- 11.5 Adaptive thresholding and Stein's principle.- 11.6 Oracle inequalities.- 11.7 Bibliographic remarks.- 12 Computational aspects and software.- 12.1 Introduction.- 12.2 The cascade algorithm.- 12.3 Discrete wavelet transform.- 12.4 Statistical implementation of the DWT.- 12.5 Translation invariant wavelet estimation.- 12.6 Main wavelet commands in XploRe.- A Tables.- A.1 Wavelet Coefficients.- A.2.- B Software Availability.- C Bernstein and Rosenthal inequalities.- D A Lemma on the Riesz basis.- Author Index.

634 citations

Journal ArticleDOI
TL;DR: New fusion alternatives based on the same concept are presented, using the multiresolution wavelet decomposition to execute the detail extraction phase and the intensity-hue-saturation (IHS) and principal component analysis (PCA) procedures to inject the spatial detail of the panchromatic image into the multispectral one.
Abstract: Since Chavez proposed the highpass filtering procedure to fuse multispectral and panchromatic images, several fusion methods have been developed based on the same principle: to extract from the panchromatic image spatial detail information to later inject it into the multispectral one. In this paper, we present new fusion alternatives based on the same concept, using the multiresolution wavelet decomposition to execute the detail extraction phase and the intensity-hue-saturation (IHS) and principal component analysis (PCA) procedures to inject the spatial detail of the panchromatic image into the multispectral one. The multiresolution wavelet decomposition has been performed using both decimated and undecimated algorithms and the resulting merged images compared both spectral and spatially. These fusion methods, as well as standard IHS-, PCA-, and wavelet-based methods have been used to merge Systeme Pour l'Observation de la Terre (SPOT) 4 XI and SPOT 4 M images with a ratio 4:1. We have estimated the validity of each fusion method by analyzing, visually and quantitatively, the quality of the resulting fused images. The methodological approaches proposed in this paper result in merged images with improved quality with respect to those obtained by standard IHS, PCA, and standard wavelet-based fusion methods. For both proposed fusion methods, better results are obtained when an undecimated algorithm is used to perform the multiresolution wavelet decomposition.

613 citations

Journal ArticleDOI
TL;DR: In this paper, a multiresolution signal decomposition technique is used to detect and localize transient events and furthermore classify different power quality disturbances, which can also be used to distinguish among similar disturbances.
Abstract: The wavelet transform is introduced as a powerful tool for monitoring power quality problems generated due to the dynamic performance of industrial plants. The paper presents a multiresolution signal decomposition technique as an efficient method in analyzing transient events. The multiresolution signal decomposition has the ability to detect and localize transient events and furthermore classify different power quality disturbances. It can also be used to distinguish among similar disturbances.

603 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
87% related
Image processing
229.9K papers, 3.5M citations
86% related
Artificial neural network
207K papers, 4.5M citations
84% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202252
202159
202070
201969
201879