Topic

# Multispectral image

About: Multispectral image is a research topic. Over the lifetime, 13493 publications have been published within this topic receiving 247473 citations.

##### Papers published on a yearly basis

##### Papers

More filters

•

[...]

TL;DR: In this article, the authors present a textbook for introductory courses in remote sensing, which includes concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; air photo interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

Abstract: A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.

6,790 citations

•

[...]

01 Jan 1997

TL;DR: The Nature of Remote Sensing: Introduction, Sensor Characteristics and Spectral Stastistics, and Spatial Transforms: Introduction.

Abstract: The Nature of Remote Sensing: Introduction. Remote Sensing. Information Extraction from Remote-Sensing Images. Spectral Factors in Remote Sensing. Spectral Signatures. Remote-Sensing Systems. Optical Sensors. Temporal Characteristics. Image Display Systems. Data Systems. Summary. Exercises. References. Optical Radiation Models: Introduction. Visible to Short Wave Infrared Region. Solar Radiation. Radiation Components. Surface-Reflected. Unscattered Component. Surface-Reflected. Atmosphere-Scattered Component. Path-Scattered Component. Total At-Sensor. Solar Radiance. Image Examples in the Solar Region. Terrain Shading. Shadowing. Atmospheric Correction. Midwave to Thermal Infrared Region. Thermal Radiation. Radiation Components. Surface-Emitted Component. Surface-Reflected. Atmosphere-Emitted Component. Path-Emitted Component. Total At-Sensor. Emitted Radiance. Total Solar and Thermal Upwelling Radiance. Image Examples in the Thermal Region. Summary. Exercises. References. Sensor Models: Introduction. Overall Sensor Model. Resolution. The Instrument Response. Spatial Resolution. Spectral Resolution. Spectral Response. Spatial Response. Optical PSFopt. Image Motion PSFIM. Detector PSFdet. Electronics PSFel. Net PSFnet. Comparison of Sensor PSFs. PSF Summary for TM. Imaging System Simulation. Amplification. Sampling and Quantization. Simplified Sensor Model. Geometric Distortion. Orbit Models. Platform Attitude Models. Scanner Models. Earth Model. Line and Whiskbroom ScanGeometry. Pushbroom Scan Geometry. Topographic Distortion. Summary. Exercises. References. Data Models: Introduction. A Word on Notation. Univariate Image Statistics. Histogram. Normal Distribution. Cumulative Histogram. Statistical Parameters. Multivariate Image Statistics. Reduction to Univariate Statistics. Noise Models. Statistical Measures of Image Quality. Contrast. Modulation. Signal-to-Noise Ratio (SNR). Noise Equivalent Signal. Spatial Statistics. Visualization of Spatial Covariance. Covariance with Semivariogram. Separability and Anisotropy. Power Spectral Density. Co-occurrence Matrix. Fractal Geometry. Topographic and Sensor Effects. Topography and Spectral Statistics. Sensor Characteristics and Spectral Stastistics. Sensor Characteristics and Spectral Scattergrams. Summary. Exercises. References. Spectral Transforms: Introduction. Feature Space. Multispectral Ratios. Vegetation Indexes. Image Examples. Principal Components. Standardized Principal Components (SPC) Transform. Maximum Noise Fraction (MNF) Transform. Tasseled Cap Tranformation. Contrast Enhancement. Transformations Based on Global Statistics. Linear Transformations. Nonlinear Transformations. Normalization Stretch. Reference Stretch. Thresholding. Adaptive Transformation. Color Image Contrast Enhancement. Min-max Stretch. Normalization Stretch. Decorrelation Stretch. Color Spacer Transformations. Summary. Exercises. References. Spatial Transforms: Introduction. An Image Model for Spatial Filtering. Convolution Filters. Low Pass and High Pass Filters. High Boost Filters. Directional Filters. The Border Region. Characterization of Filtered Images. The Box Filter Algorithm. Cascaded Linear Filters. Statistical Filters. Gradient Filters. Fourier Synthesis. Discrete Fourier Transforms in 2-D. The Fourier Components. Filtering with the Fourier Transform. Transfer Functions. The Power Spectrum. Scale Space Transforms. Image Resolution Pyramids. Zero-Crossing Filters. Laplacian-of-Gaussian (LoG) Filters. Difference-of-Gaussians (DoG) Filters.Wavelet Transforms. Summary. Exercises. References. Correction and Calibration: Introduction. Noise Correction. Global Noise. Sigma Filter. Nagao-Matsuyama Filter. Local Noise. Periodic Noise. Distriping 359. Global,Linear Detector Matching. Nonlinear Detector Matching. Statistical Modification to Linear and Nonlinear Detector. Matching. Spatial Filtering Approaches. Radiometric Calibration. Sensor Calibration. Atmospheric Correction. Solar and Topographic Correction. Image Examples. Calibration and Normalization of Hyperspectral Imagery. AVIRIS Examples. Distortion Correction. Polynomial Distortion Models. Ground Control Points (GCPs). Coordinate Transformation. Map Projections. Resampling. Summary. Exercises References. Registration and Image Fusion: Introduction. What is Registration? Automated GCP Location. Area Correlation. Other Spatial Features. Orthrectification. Low-Resolution DEM. High-Resolution DEM. Hierarchical Warp Stereo. Multi-Image Fusion. Spatial Domain Fusion. High Frequency Modulation. Spectral Domain Fusion. Fusion Image Examples. Summary. Exercises. References. Thematic Classification: Introduction. The Importance of Image Scale. The Notion of Similarity. Hard Versus Soft Classification. Training the Classifier. Supervised Training. Unsupervised Training. K-Means Clustering Algorithm. Clustering Examples. Hybrid Supervised/Unsupervised Training. Non-Parametric Classification Algorithms. Level-Slice. Nearest-Mean. Artificial Neural Networks (ANNs). Back-Propagation Algorithm. Nonparametric Classification Examples. Parametric Classification Algorithms. Estimation of Model-Parameters. Discriminant Functions. The Normal Distribution Model. Relation to the Nearest-Mean Classifier. Supervised Classification Examples and Comparison to Nonparametric Classifiers. Segmentation. Region Growing. Region Labeling. Sub-Pixel Classification. The Linear Mixing Model. Unmixing Model. Hyperspectral Image Analysis. Visualization of the Image Cube. Feature Extraction. Image Residuals. Pre-Classification Processing and Feature Extraction. Classification Algorithms. Exercises. Error Analysis. Multitemporal Images. Summary. References. Index.

2,245 citations

••

[...]

TL;DR: A new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA), which competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.

Abstract: Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.

2,090 citations

••

[...]

TL;DR: This paper presents an overview of un Mixing methods from the time of Keshava and Mustard's unmixing tutorial to the present, including Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixed algorithms.

Abstract: Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.

1,979 citations

•

[...]

TL;DR: An overview of unmixing methods from the time of Keshava and Mustard's tutorial as mentioned in this paper to the present can be found in Section 2.2.1].

Abstract: Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.

1,808 citations