scispace - formally typeset
Search or ask a question
Topic

Multivariate stable distribution

About: Multivariate stable distribution is a research topic. Over the lifetime, 1059 publications have been published within this topic receiving 69020 citations.


Papers
More filters
Book
01 Jan 1982
TL;DR: In this article, the authors present an overview of the basic concepts of multivariate analysis, including matrix algebra and random vectors, as well as a strategy for analyzing multivariate models.
Abstract: (NOTE: Each chapter begins with an Introduction, and concludes with Exercises and References.) I. GETTING STARTED. 1. Aspects of Multivariate Analysis. Applications of Multivariate Techniques. The Organization of Data. Data Displays and Pictorial Representations. Distance. Final Comments. 2. Matrix Algebra and Random Vectors. Some Basics of Matrix and Vector Algebra. Positive Definite Matrices. A Square-Root Matrix. Random Vectors and Matrices. Mean Vectors and Covariance Matrices. Matrix Inequalities and Maximization. Supplement 2A Vectors and Matrices: Basic Concepts. 3. Sample Geometry and Random Sampling. The Geometry of the Sample. Random Samples and the Expected Values of the Sample Mean and Covariance Matrix. Generalized Variance. Sample Mean, Covariance, and Correlation as Matrix Operations. Sample Values of Linear Combinations of Variables. 4. The Multivariate Normal Distribution. The Multivariate Normal Density and Its Properties. Sampling from a Multivariate Normal Distribution and Maximum Likelihood Estimation. The Sampling Distribution of 'X and S. Large-Sample Behavior of 'X and S. Assessing the Assumption of Normality. Detecting Outliners and Data Cleaning. Transformations to Near Normality. II. INFERENCES ABOUT MULTIVARIATE MEANS AND LINEAR MODELS. 5. Inferences About a Mean Vector. The Plausibility of ...m0 as a Value for a Normal Population Mean. Hotelling's T 2 and Likelihood Ratio Tests. Confidence Regions and Simultaneous Comparisons of Component Means. Large Sample Inferences about a Population Mean Vector. Multivariate Quality Control Charts. Inferences about Mean Vectors When Some Observations Are Missing. Difficulties Due To Time Dependence in Multivariate Observations. Supplement 5A Simultaneous Confidence Intervals and Ellipses as Shadows of the p-Dimensional Ellipsoids. 6. Comparisons of Several Multivariate Means. Paired Comparisons and a Repeated Measures Design. Comparing Mean Vectors from Two Populations. Comparison of Several Multivariate Population Means (One-Way MANOVA). Simultaneous Confidence Intervals for Treatment Effects. Two-Way Multivariate Analysis of Variance. Profile Analysis. Repealed Measures, Designs, and Growth Curves. Perspectives and a Strategy for Analyzing Multivariate Models. 7. Multivariate Linear Regression Models. The Classical Linear Regression Model. Least Squares Estimation. Inferences About the Regression Model. Inferences from the Estimated Regression Function. Model Checking and Other Aspects of Regression. Multivariate Multiple Regression. The Concept of Linear Regression. Comparing the Two Formulations of the Regression Model. Multiple Regression Models with Time Dependant Errors. Supplement 7A The Distribution of the Likelihood Ratio for the Multivariate Regression Model. III. ANALYSIS OF A COVARIANCE STRUCTURE. 8. Principal Components. Population Principal Components. Summarizing Sample Variation by Principal Components. Graphing the Principal Components. Large-Sample Inferences. Monitoring Quality with Principal Components. Supplement 8A The Geometry of the Sample Principal Component Approximation. 9. Factor Analysis and Inference for Structured Covariance Matrices. The Orthogonal Factor Model. Methods of Estimation. Factor Rotation. Factor Scores. Perspectives and a Strategy for Factor Analysis. Structural Equation Models. Supplement 9A Some Computational Details for Maximum Likelihood Estimation. 10. Canonical Correlation Analysis Canonical Variates and Canonical Correlations. Interpreting the Population Canonical Variables. The Sample Canonical Variates and Sample Canonical Correlations. Additional Sample Descriptive Measures. Large Sample Inferences. IV. CLASSIFICATION AND GROUPING TECHNIQUES. 11. Discrimination and Classification. Separation and Classification for Two Populations. Classifications with Two Multivariate Normal Populations. Evaluating Classification Functions. Fisher's Discriminant Function...nSeparation of Populations. Classification with Several Populations. Fisher's Method for Discriminating among Several Populations. Final Comments. 12. Clustering, Distance Methods and Ordination. Similarity Measures. Hierarchical Clustering Methods. Nonhierarchical Clustering Methods. Multidimensional Scaling. Correspondence Analysis. Biplots for Viewing Sample Units and Variables. Procustes Analysis: A Method for Comparing Configurations. Appendix. Standard Normal Probabilities. Student's t-Distribution Percentage Points. ...c2 Distribution Percentage Points. F-Distribution Percentage Points. F-Distribution Percentage Points (...a = .10). F-Distribution Percentage Points (...a = .05). F-Distribution Percentage Points (...a = .01). Data Index. Subject Index.

11,697 citations

Book
01 Jan 1982
TL;DR: In this paper, the authors present a set of standard tests on Covariance Matrices and Mean Vectors, and test independence between k Sets of Variables and Canonical Correlation Analysis.
Abstract: Tables. Commonly Used Notation. 1. The Multivariate Normal and Related Distributions. 2. Jacobians, Exterior Products, Kronecker Products, and Related Topics. 3. Samples from a Multivariate Normal Distribution, and the Wishart and Multivariate BETA Distributions. 4. Some Results Concerning Decision-Theoretic Estimation of the Parameters of a Multivariate Normal Distribution. 5. Correlation Coefficients. 6. Invariant Tests and Some Applications. 7. Zonal Polynomials and Some Functions of Matrix Argument. 8. Some Standard Tests on Covariance Matrices and Mean Vectors. 9. Principal Components and Related Topics. 10. The Multivariate Linear Model. 11. Testing Independence Between k Sets of Variables and Canonical Correlation Analysis. Appendix: Some Matrix Theory. Bibliography. Index.

4,343 citations

MonographDOI
David Scott1
17 Aug 1992

3,024 citations

Journal ArticleDOI
TL;DR: In this article, an unbiased estimate of risk is obtained for an arbitrary estimate, and certain special classes of estimates are then discussed, such as smoothing by using moving averages and trimmed analogs of the James-Stein estimate.
Abstract: Estimation of the means of independent normal random variables is considered, using sum of squared errors as loss. An unbiased estimate of risk is obtained for an arbitrary estimate, and certain special classes of estimates are then discussed. The results are applied to smoothing by use of moving averages and to trimmed analogs of the James-Stein estimate. A suggestion is made for calculating approximate confidence sets for the mean vector centered at an arbitrary estimate.

2,866 citations

Journal ArticleDOI
TL;DR: For rectangular confidence regions for the mean values of multivariate normal distributions, this paper proved that a confidence region constructed for independent coordinates is, at the same time, a conservative confidence region for any case of dependent coordinates.
Abstract: For rectangular confidence regions for the mean values of multivariate normal distributions the following conjecture of 0. J. Dunn [3], [4] is proved: Such a confidence region constructed for the case of independent coordinates is, at the same time, a conservative confidence region for any case of dependent coordinates. This result is based on an inequality for the probabilities of rectangles in normal distributions, which permits one to factor out the probability for any single coordinate.

2,413 citations


Network Information
Related Topics (5)
Nonparametric statistics
19.9K papers, 844.1K citations
78% related
Statistical inference
11.2K papers, 604.4K citations
75% related
Goodness of fit
8.5K papers, 639.2K citations
75% related
Estimator
97.3K papers, 2.6M citations
75% related
Random variable
29.1K papers, 674.6K citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
20226
20203
20194
201810
201723