scispace - formally typeset
Search or ask a question
Topic

Murchison meteorite

About: Murchison meteorite is a research topic. Over the lifetime, 1260 publications have been published within this topic receiving 49038 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the exact determination of REE and Ba abundances in three carbonaceous (Orgueil Cl, Murchison C2 and Allende C3) and seven olivine-bronzite chondrites were carried out by mass spectrometric isotope dilution technique.

2,026 citations

Journal ArticleDOI
14 Feb 1997-Science
TL;DR: Gas chromatographic-mass spectral analyses of the four stereoisomers of 2-amino-2,3-dimethylpentanoic acid obtained from the Murchison meteorite show that the L enantiomer occurs in excess, indicative of an asymmetric influence on organic chemical evolution before the origin of life.
Abstract: Gas chromatographic-mass spectral analyses of the four stereoisomers of 2-amino-2,3-dimethylpentanoic acid (dl-alpha-methylisoleucine and dl-alpha-methylalloisoleucine) obtained from the Murchison meteorite show that the L enantiomer occurs in excess (7.0 and 9.1%, respectively) in both of the enantiomeric pairs. Similar results were obtained for two other alpha-methyl amino acids, isovaline and alpha-methylnorvaline, although the alpha hydrogen analogs of these amino acids, alpha-amino-n-butyric acid and norvaline, were found to be racemates. With the exception of alpha-amino-n-butyric acid, these amino acids are either unknown or of limited occurrence in the biosphere. Because carbonaceous chondrites formed 4.5 billion years ago, the results are indicative of an asymmetric influence on organic chemical evolution before the origin of life.

768 citations

Journal ArticleDOI
05 Dec 1970-Nature
TL;DR: Organic molecules found in meteorites seem to have been formed before the meteorites reached Earth, according to new research.
Abstract: Extraterrestrial abiotic amino acids and hydrocarbons in type II carbonaceous chondrite at Murchison, Australia

762 citations

Journal ArticleDOI
11 Jan 2001-Nature
TL;DR: In situ U–Pb and oxygen isotope results for detrital zircons found within 3-Gyr-old quartzitic rocks in the Murchison District of Western Australia are consistent with the presence of a hydrosphere interacting with the crust by 4,300 Myr ago and are postulated to form from magmas containing a significant component of re-worked continental crust.
Abstract: Granitoid gneisses and supracrustal rocks that are 3,800–4,000 Myr old are the oldest recognized exposures of continental crust1. To obtain insight into conditions at the Earth's surface more than 4 Gyr ago requires the analysis of yet older rocks or their mineral remnants. Such an opportunity is presented by detrital zircons more than 4 Gyr old found within 3-Gyr-old quartzitic rocks in the Murchison District of Western Australia2,3. Here we report in situ U–Pb and oxygen isotope results for such zircons that place constraints on the age and composition of their sources and may therefore provide information about the nature of the Earth's early surface. We find that 3,910–4,280 Myr old zircons have oxygen isotope (δ18O) values ranging from 5.4 ± 0.6‰ to 15.0 ± 0.4‰. On the basis of these results, we postulate that the ∼4,300-Myr-old zircons formed from magmas containing a significant component of re-worked continental crust that formed in the presence of water near the Earth's surface. These data are therefore consistent with the presence of a hydrosphere interacting with the crust by 4,300 Myr ago.

723 citations

Journal ArticleDOI
28 Mar 2002-Nature
TL;DR: A laboratory demonstration that glycine, alanine and serine naturally form from ultraviolet photolysis of the analogues of icy interstellar grains is reported, suggesting that at least some meteoritic amino acids are the result of interstellar photochemistry, rather than formation in liquid water on an early Solar System body.
Abstract: The delivery of extraterrestrial organic molecules to Earth by meteorites may have been important for the origin and early evolution of life. Indigenous amino acids have been found in meteorites-over 70 in the Murchison meteorite alone. Although it has been generally accepted that the meteoritic amino acids formed in liquid water on a parent body, the water in the Murchison meteorite is depleted in deuterium relative to the indigenous organic acids. Moreover, the meteoritical evidence for an excess of laevo-rotatory amino acids is hard to understand in the context of liquid-water reactions on meteorite parent bodies. Here we report a laboratory demonstration that glycine, alanine and serine naturally form from ultraviolet photolysis of the analogues of icy interstellar grains. Such amino acids would naturally have a deuterium excess similar to that seen in interstellar molecular clouds, and the formation process could also result in enantiomeric excesses if the incident radiation is circularly polarized. These results suggest that at least some meteoritic amino acids are the result of interstellar photochemistry, rather than formation in liquid water on an early Solar System body.

686 citations


Network Information
Related Topics (5)
Basalt
18.6K papers, 805.1K citations
79% related
Mantle (geology)
26.1K papers, 1.3M citations
78% related
Zircon
23.7K papers, 786.6K citations
73% related
Continental crust
11.1K papers, 677.5K citations
73% related
Sedimentary rock
30.3K papers, 746.5K citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202316
202223
202117
202018
201921
201820