scispace - formally typeset
Search or ask a question
Topic

Muscle fatigue

About: Muscle fatigue is a research topic. Over the lifetime, 5205 publications have been published within this topic receiving 181401 citations.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: Evidence for "central" fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it.
Abstract: Muscle fatigue is an exercise-induced reduction in maximal voluntary muscle force. It may arise not only because of peripheral changes at the level of the muscle, but also because the central nervous system fails to drive the motoneurons adequately. Evidence for “central” fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it. Much data suggest that voluntary activation of human motoneurons and muscle fibers is suboptimal and thus maximal voluntary force is commonly less than true maximal force. Hence, maximal voluntary strength can often be below true maximal muscle force. The technique of twitch interpolation has helped to reveal the changes in drive to motoneurons during fatigue. Voluntary activation usually diminishes during maximal voluntary isometric tasks, that is central fatigue develops, and motor unit firing rates decline. Transcranial magnetic stimulation over the motor cortex during fatiguing exercise has revealed focal cha...

2,908 citations

Journal ArticleDOI

[...]

15 Aug 2002-Nature
TL;DR: Using fibre-type-specific promoters, it is shown in cultured muscle cells that PGC-1α activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression.
Abstract: The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination

2,143 citations

Journal ArticleDOI

[...]

TL;DR: O Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.
Abstract: The first suggestion that physical exercise results in free radical-mediated damage to tissues appeared in 1978, and the past three decades have resulted in a large growth of knowledge regarding exercise and oxidative stress. Although the sources of oxidant production during exercise continue to be debated, it is now well established that both resting and contracting skeletal muscles produce reactive oxygen species and reactive nitrogen species. Importantly, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Furthermore, oxidants can modulate a number of cell signaling pathways and regulate the expression of multiple genes in eukaryotic cells. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, DNA repair proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species promote contractile dysfunction resulting in muscle weakness and fatigue. Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.

1,833 citations

Journal ArticleDOI

[...]

TL;DR: Most of the mechanistic studies of fatigue are on isolated animal tissues, and another major challenge is to use the knowledge generated in these studies to identify the mechanisms of fatigue in intact animals and particularly in human diseases.
Abstract: Repeated, intense use of muscles leads to a decline in performance known as muscle fatigue. Many muscle properties change during fatigue including the action potential, extracellular and intracellular ions, and many intracellular metabolites. A range of mechanisms have been identified that contribute to the decline of performance. The traditional explanation, accumulation of intracellular lactate and hydrogen ions causing impaired function of the contractile proteins, is probably of limited importance in mammals. Alternative explanations that will be considered are the effects of ionic changes on the action potential, failure of SR Ca2+ release by various mechanisms, and the effects of reactive oxygen species. Many different activities lead to fatigue, and an important challenge is to identify the various mechanisms that contribute under different circumstances. Most of the mechanistic studies of fatigue are on isolated animal tissues, and another major challenge is to use the knowledge generated in these studies to identify the mechanisms of fatigue in intact animals and particularly in human diseases.

1,807 citations

Journal ArticleDOI

[...]

TL;DR: It appears likely that this condition is associated with and likely caused by muscle injury, such that the SR releases less Ca2+ at low frequencies of activation, and LFF could result from a reduced membrane excitability,such that the sarcolemma action potential frequency is considerably less than the stimulation frequency.
Abstract: Fatigue, defined as the failure to maintain the required or expected power output, is a complex problem, since multiple factors are clearly involved, with the relative importance of each dependent on the fiber type composition of the contracting muscles(s), and the intensity, type, and duration of the contractile activity. The primary sites of fatigue appear to be within the muscle cell itself and for the most part do not involve the central nervous system or the neuromuscular junction. The major hypotheses of fatigue center on disturbances in the surface membrane, E-C coupling, or metabolic events. The cell sites most frequently linked to the etiology of skeletal muscle fatigue are shown in Figure 1. Skeletal muscles are composed of at least four distinct fiber types (3 fast twitch and 1 slow twitch), with the slow type I and fast type IIa fibers containing the highest mitochondrial content and fatigue resistance. Despite fiber type differences in the degree of fatigability, the contractile properties undergo characteristic changes with the development of fatigue that can be observed in whole muscles, single motor units, and single fibers. The Po declines, and the contraction and relaxation times are prolonged. Additionally, there is a decrease in the peak rate of tension development and decline and a reduced Vo. Changes in Vo are more resistant to fatigue than Po and are not observed until Po has declined by at least 10% of its initial prefatigued value. However, the reduced peak power by which fatigue is defined results from both a reduction in Vo and Po. In the absence of muscle fiber damage, the prolonged relaxation time associated with fatigue causes the force-frequency curve to shift to the left, such that peak tensions are obtained at lower frequencies of stimulation. In a mechanism not clearly understood, the central nervous system senses this condition and reduces the alpha-motor nerve activation frequency as fatigue develops. In some cases, selective LFF develops that displaces the force-frequency curve to the right. Although not proven, it appears likely that this condition is associated with and likely caused by muscle injury, such that the SR releases less Ca2+ at low frequencies of activation. Alternatively, LFF could result from a reduced membrane excitability, such that the sarcolemma action potential frequency is considerably less than the stimulation frequency.(ABSTRACT TRUNCATED AT 400 WORDS)

1,474 citations


Network Information
Related Topics (5)
Isometric exercise
16.2K papers, 622.1K citations
85% related
Physical exercise
16.6K papers, 982K citations
84% related
Muscle contraction
15.7K papers, 736.1K citations
83% related
Aerobic exercise
17.9K papers, 557.5K citations
83% related
Skeletal muscle
58.8K papers, 2.4M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202359
2022153
2021193
2020247
2019202
2018229