scispace - formally typeset
Search or ask a question

Showing papers on "Mutant published in 2008"


Journal ArticleDOI
11 Sep 2008-Nature
TL;DR: Evidence is presented that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigOLactone application restores the wild-type branching phenotype to ccd8 mutants, and that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack striglactone response.
Abstract: A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigolactone application restores the wild-type branching phenotype to ccd8 mutants. Moreover, we show that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack strigolactone response, and are not deficient in strigolactones. These responses are conserved in Arabidopsis. In agreement with the expected properties of the hormonal signal, exogenous strigolactone can be transported in shoots and act at low concentrations. We suggest that endogenous strigolactones or related compounds inhibit shoot branching in plants. Furthermore, ccd8 mutants demonstrate the diverse effects of strigolactones in shoot branching, mycorrhizal symbiosis and parasitic weed interaction.

1,873 citations


Journal ArticleDOI
TL;DR: It is concluded that the T790M mutation is a “generic” resistance mutation that will reduce the potency of any ATP-competitive kinase inhibitor and that irreversible inhibitors overcome this resistance simply through covalent binding, not as a result of an alternative binding mode.
Abstract: Lung cancers caused by activating mutations in the epidermal growth factor receptor (EGFR) are initially responsive to small molecule tyrosine kinase inhibitors (TKIs), but the efficacy of these agents is often limited because of the emergence of drug resistance conferred by a second mutation, T790M. Threonine 790 is the "gatekeeper" residue, an important determinant of inhibitor specificity in the ATP binding pocket. The T790M mutation has been thought to cause resistance by sterically blocking binding of TKIs such as gefitinib and erlotinib, but this explanation is difficult to reconcile with the fact that it remains sensitive to structurally similar irreversible inhibitors. Here, we show by using a direct binding assay that T790M mutants retain low-nanomolar affinity for gefitinib. Furthermore, we show that the T790M mutation activates WT EGFR and that introduction of the T790M mutation increases the ATP affinity of the oncogenic L858R mutant by more than an order of magnitude. The increased ATP affinity is the primary mechanism by which the T790M mutation confers drug resistance. Crystallographic analysis of the T790M mutant shows how it can adapt to accommodate tight binding of diverse inhibitors, including the irreversible inhibitor HKI-272, and also suggests a structural mechanism for catalytic activation. We conclude that the T790M mutation is a "generic" resistance mutation that will reduce the potency of any ATP-competitive kinase inhibitor and that irreversible inhibitors overcome this resistance simply through covalent binding, not as a result of an alternative binding mode.

1,741 citations


Journal ArticleDOI
01 Mar 2008-Blood
TL;DR: There was a highly significant trend for worsening in relapse risk (RR) and overall survival (OS) with increasing FLT3/ITD mutant level, and mutant level was the most powerful prognostic factor for RR.

695 citations


Journal ArticleDOI
TL;DR: In this article, the authors review various strategies for small RNA-based gene silencing, and describe in detail the design and application of amiRNAs in many plant species.
Abstract: Comprehensive analysis of gene function requires the detailed examination of mutant alleles In Arabidopsis thaliana, large collections of sequence-indexed insertion and chemical mutants provide potential loss-of-function alleles for most annotated genes However, limitations for phenotypic analysis include gametophytic or early sporophytic lethality, and the ability to recombine mutant alleles in closely linked genes, especially those present as tandem duplications Transgene-mediated gene silencing can overcome some of these shortcomings through tissue-specific, inducible and partial gene inactivation, or simultaneous targeting of several, sequence-related genes In addition, gene silencing is a convenient approach in species or varieties for which exhaustive mutant collections are not yet available Typically, gene function is reduced post-transcriptionally, effected by small RNAs that act in a sequence-specific manner by base pairing to complementary mRNA molecules A recently introduced approach is the use of artificial microRNAs (amiRNAs) Here, we review various strategies for small RNA-based gene silencing, and describe in detail the design and application of amiRNAs in many plant species

659 citations


Journal ArticleDOI
TL;DR: The genetic characterization of p5cs insertion mutants is described, which indicates that P5CS1 is required for proline accumulation under osmotic stress, and that P4CS2 is insufficient for compensation of developmental defects caused by inactivation of P5 CS2.
Abstract: Delta-1-pyrroline-5-carboxylate synthetase enzymes, which catalyse the rate-limiting step of proline biosynthesis, are encoded by two closely related P5CS genes in Arabidopsis. Transcription of the P5CS genes is differentially regulated by drought, salinity and abscisic acid, suggesting that these genes play specific roles in the control of proline biosynthesis. Here we describe the genetic characterization of p5cs insertion mutants, which indicates that P5CS1 is required for proline accumulation under osmotic stress. Knockout mutations of P5CS1 result in the reduction of stress-induced proline synthesis, hypersensitivity to salt stress, and accumulation of reactive oxygen species. By contrast, p5cs2 mutations cause embryo abortion during late stages of seed development. The desiccation sensitivity of p5cs2 embryos does not reflect differential control of transcription, as both P5CS mRNAs are detectable throughout embryonic development. Cellular localization studies with P5CS-GFP gene fusions indicate that P5CS1 is sequestered into subcellular bodies in embryonic cells, where P5CS2 is dominantly cytoplasmic. Although proline feeding rescues the viability of mutant embryos, p5cs2 seedlings undergo aberrant development and fail to produce fertile plants even when grown on proline. In seedlings, specific expression of P5CS2-GFP is seen in leaf primordia where P5CS1-GFP levels are very low, and P5CS2-GFP also shows a distinct cell-type-specific and subcellular localization pattern compared to P5CS1-GFP in root tips, leaves and flower organs. These data demonstrate that the Arabidopsis P5CS enzymes perform non-redundant functions, and that P5CS1 is insufficient for compensation of developmental defects caused by inactivation of P5CS2.

613 citations


Journal ArticleDOI
18 Sep 2008-Oncogene
TL;DR: Structural and genetic data suggest that the mutations affect regulatory inter- and intramolecular interactions and support the conclusion that there are at least two molecular mechanisms for the gain of function in p110 α, and inhibitors that target exclusively the cancer-specific mutants of p110α constitute an important goal and challenge for current drug development.
Abstract: Class I phosphoinositide 3-kinase (PI3K) is a dimeric enzyme, consisting of a catalytic and a regulatory subunit. The catalytic subunit occurs in four isoforms designated as p110 alpha, p110 beta, p110 gamma and p110 delta. These isoforms combine with several regulatory subunits; for p110 alpha, beta and delta, the standard regulatory subunit is p85, for p110 gamma, it is p101. PI3Ks play important roles in human cancer. PIK3CA, the gene encoding p110 alpha, is mutated frequently in common cancers, including carcinoma of the breast, prostate, colon and endometrium. Eighty percent of these mutations are represented by one of the three amino-acid substitutions in the helical or kinase domains of the enzyme. The mutant p110 alpha shows a gain of function in enzymatic and signaling activity and is oncogenic in cell culture and in animal model systems. Structural and genetic data suggest that the mutations affect regulatory inter- and intramolecular interactions and support the conclusion that there are at least two molecular mechanisms for the gain of function in p110 alpha. One of these mechanisms operates largely independently of binding to p85, the other abolishes the requirement for an interaction with Ras. The non-alpha isoforms of p110 do not show cancer-specific mutations. However, they are often differentially expressed in cancer and, in contrast to p110 alpha, wild-type non-alpha isoforms of p110 are oncogenic when overexpressed in cell culture. The isoforms of p110 have become promising drug targets. Isoform-selective inhibitors have been identified. Inhibitors that target exclusively the cancer-specific mutants of p110 alpha constitute an important goal and challenge for current drug development.

576 citations


Journal ArticleDOI
TL;DR: It is proposed that enhanced activation of p53 by lack of Sirt7-mediated deacetylation contributes to the heart phenotype of SIRT7 mutant mice, suggesting a critical role of Sirts in the regulation of stress responses and cell death in the heart.
Abstract: Sirt7 is a member of the mammalian sirtuin family consisting of 7 genes, Sirt1 to Sirt7, which all share a homology to the founding family member, the yeast Sir2 gene. Most sirtuins are supposed to act as histone/protein deacetylases, which use oxidized NAD in a sirtuin-specific, 2-step deacetylation reaction. To begin to decipher the biological role of Sirt7, we inactivated the Sirt7 gene in mice. Sirt7-deficient animals undergo a reduction in mean and maximum lifespans and develop heart hypertrophy and inflammatory cardiomyopathy. Sirt7 mutant hearts are also characterized by an extensive fibrosis, which leads to a 3-fold increase in collagen III accumulation. We found that Sirt7 interacts with p53 and efficiently deacetylates p53 in vitro, which corresponds to hyperacetylation of p53 in vivo and an increased rate of apoptosis in the myocardium of mutant mice. Sirt7-deficient primary cardiomyocytes show a approximately 200% increase in basal apoptosis and a significantly diminished resistance to oxidative and genotoxic stress suggesting a critical role of Sirt7 in the regulation of stress responses and cell death in the heart. We propose that enhanced activation of p53 by lack of Sirt7-mediated deacetylation contributes to the heart phenotype of Sirt7 mutant mice.

572 citations


Journal ArticleDOI
Yong Xiang1, Ning Tang1, Hao Du1, Haiyan Ye1, Lizhong Xiong1 
TL;DR: It is proposed that OsbZIP23 is a major player of the bZIP family in rice for conferring ABA-dependent drought and salinity tolerance and has high potential usefulness in genetic improvement of stress tolerance.
Abstract: OsbZIP23 is a member of the basic leucine zipper (bZIP) transcription factor family in rice (Oryza sativa). Expression of OsbZIP23 is strongly induced by a wide spectrum of stresses, including drought, salt, abscisic acid (ABA), and polyethylene glycol treatments, while other stress-responsive genes of this family are slightly induced only by one or two of the stresses. Transactivation assay in yeast demonstrated that OsbZIP23 functions as a transcriptional activator, and the sequences at the N terminus (amino acids 1–59) and a region close to the C terminus (amino acids 210–240) are required for the transactivation activity. Transient expression of OsbZIP23-green fluorescent protein in onion (Allium cepa) cells revealed a nuclear localization of the protein. Transgenic rice overexpressing OsbZIP23 showed significantly improved tolerance to drought and high-salinity stresses and sensitivity to ABA. On the other hand, a null mutant of this gene showed significantly decreased sensitivity to a high concentration of ABA and decreased tolerance to high-salinity and drought stress, and this phenotype can be complemented by transforming the OsbZIP23 back into the mutant. GeneChip and real-time polymerase chain reaction analyses revealed that hundreds of genes were up- or down-regulated in the rice plants overexpressing OsbZIP23. More than half of these genes have been annotated or evidenced for their diverse functions in stress response or tolerance. In addition, more than 30 genes that are possible OsbZIP23-specific target genes were identified based on the comparison of the expression profiles in the overexpressor and the mutant of OsbZIP23. Collectively, these results indicate that OsbZIP23 functions as a transcriptional regulator that can regulate the expression of a wide spectrum of stress-related genes in response to abiotic stresses through an ABA-dependent regulation pathway. We propose that OsbZIP23 is a major player of the bZIP family in rice for conferring ABA-dependent drought and salinity tolerance and has high potential usefulness in genetic improvement of stress tolerance.

563 citations


Journal ArticleDOI
TL;DR: The anchor-away technique depletes the nucleus of Saccharomyces cerevisiae of a protein of interest by conditional tethering to an abundant cytoplasmic protein (the anchor) by appropriate gene tagging and rapamycin-dependent heterodimerization.

546 citations


Journal ArticleDOI
TL;DR: mounting evidence from mice with cell restrictive, repressible or chimeric expression of mutant SOD1 transgenes and bone marrow transplants supports non-neuronal origins of neuroprotection in ALS.

508 citations


Journal ArticleDOI
TL;DR: A generic strategy for the isolation of detergent-solubilized thermostable mutants of a GPCR, the β1-adrenergic receptor, and the most stable mutant receptor, βAR-m23, was significantly more stable in a wide range of detergents ideal for crystallization and was preferentially in an antagonist conformation in the absence of ligand.
Abstract: There are ≈350 non-odorant G protein-coupled receptors (GPCRs) encoded by the human genome, many of which are predicted to be potential therapeutic targets, but there are only two structures available to represent the whole of the family. We hypothesized that improving the detergent stability of these receptors and simultaneously locking them into one preferred conformation will greatly improve the chances of crystallization. We developed a generic strategy for the isolation of detergent-solubilized thermostable mutants of a GPCR, the β1-adrenergic receptor. The most stable mutant receptor, βAR-m23, contained six point mutations that led to an apparent Tm 21°C higher than the native protein, and, in the presence of bound antagonist, βAR-m23 was as stable as bovine rhodopsin. In addition, βAR-m23 was significantly more stable in a wide range of detergents ideal for crystallization and was preferentially in an antagonist conformation in the absence of ligand.

Journal ArticleDOI
TL;DR: A rapid single-step approach to targeted gene knockout in mammalian cells, using engineered zinc-finger nucleases (ZFNs), to establish a new method for gene knockout with application to reverse genetics, functional genomics, drug discovery, and therapeutic recombinant protein production is demonstrated.
Abstract: Gene knockout is the most powerful tool for determining gene function or permanently modifying the phenotypic characteristics of a cell. Existing methods for gene disruption are limited by their efficiency, time to completion, and/or the potential for confounding off-target effects. Here, we demonstrate a rapid single-step approach to targeted gene knockout in mammalian cells, using engineered zinc-finger nucleases (ZFNs). ZFNs can be designed to target a chosen locus with high specificity. Upon transient expression of these nucleases the target gene is first cleaved by the ZFNs and then repaired by a natural—but imperfect—DNA repair process, nonhomologous end joining. This often results in the generation of mutant (null) alleles. As proof of concept for this approach we designed ZFNs to target the dihydrofolate reductase (DHFR) gene in a Chinese hamster ovary (CHO) cell line. We observed biallelic gene disruption at frequencies >1%, thus obviating the need for selection markers. Three new genetically distinct DHFR−/− cell lines were generated. Each new line exhibited growth and functional properties consistent with the specific knockout of the DHFR gene. Importantly, target gene disruption is complete within 2–3 days of transient ZFN delivery, thus enabling the isolation of the resultant DHFR−/− cell lines within 1 month. These data demonstrate further the utility of ZFNs for rapid mammalian cell line engineering and establish a new method for gene knockout with application to reverse genetics, functional genomics, drug discovery, and therapeutic recombinant protein production.

Journal ArticleDOI
TL;DR: The isolation of Arabidopsis thaliana DREB2A-INTERACTING PROTEIN1 (DRIP1) and DRIP2, C3HC4 RING domain–containing proteins that interact with the DREb2A protein in the nucleus suggest that DRIP1 andDRIP2 function negatively in the response of plants to drought stress.
Abstract: The DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) transcription factor controls water deficit–inducible gene expression and requires posttranslational modification for its activation. The activation mechanism is not well understood; however, the stability of this protein in the nucleus was recently found to be important for its activation. Here, we report the isolation of Arabidopsis thaliana DREB2A-INTERACTING PROTEIN1 (DRIP1) and DRIP2, C3HC4 RING domain–containing proteins that interact with the DREB2A protein in the nucleus. An in vitro ubiquitination assay showed that they function as E3 ubiquitin ligases and are capable of mediating DREB2A ubiquitination. Overexpression of DRIP1 in Arabidopsis delayed the expression of DREB2A-regulated drought-responsive genes. Drought-inducible gene expression was slightly enhanced in the single T-DNA mutants of drip1-1 and drip2-1. By contrast, significantly enhanced gene expression was revealed in the drip1 drip2 double mutant under dehydration stress. Collectively, these data imply that DRIP1 and DRIP2 function negatively in the response of plants to drought stress. Moreover, overexpression of full-length DREB2A protein was more stable in drip1-1 than in the wild-type background. These results suggest that DRIP1 and DRIP2 act as novel negative regulators in drought-responsive gene expression by targeting DREB2A to 26S proteasome proteolysis.

Journal ArticleDOI
TL;DR: The results suggest that CYCLOPS forms an ancient, preassembled signal transduction complex with CCaMK that is specifically required for infection, whereas organogenesis likely requires additional yet-to-be identifiedCCaMK interactors or substrates.
Abstract: The initiation of intracellular infection of legume roots by symbiotic rhizobia bacteria and arbuscular mycorrhiza (AM) fungi is preceded by the induction of calcium signatures in and around the nucleus of root epidermal cells. Although a calcium and calmodulin-dependent kinase (CCaMK) is a key mediator of symbiotic root responses, the decoding of the calcium signal and the molecular events downstream are only poorly understood. Here, we characterize Lotus japonicus cyclops mutants on which microbial infection was severely inhibited. In contrast, nodule organogenesis was initiated in response to rhizobia, but arrested prematurely. This arrest was overcome when a deregulated CCaMK mutant version was introduced into cyclops mutants, conferring the development of full-sized, spontaneous nodules. Because cyclops mutants block symbiotic infection but are competent for nodule development, they reveal a bifurcation of signal transduction downstream of CCaMK. We identified CYCLOPS by positional cloning. CYCLOPS carries a functional nuclear localization signal and a predicted coiled-coil domain. We observed colocalization and physical interaction between CCaMK and CYCLOPS in plant and yeast cell nuclei in the absence of symbiotic stimulation. Importantly, CYCLOPS is a phosphorylation substrate of CCaMK in vitro. Cyclops mutants of rice were impaired in AM, and rice CYCLOPS could restore symbiosis in Lotus cyclops mutants, indicating a functional conservation across angiosperms. Our results suggest that CYCLOPS forms an ancient, preassembled signal transduction complex with CCaMK that is specifically required for infection, whereas organogenesis likely requires additional yet-to-be identified CCaMK interactors or substrates.

Journal ArticleDOI
TL;DR: The analysis of the pho1 mutant provides additional support for systemic suppression of PHO2 by the movement of miR399 from Pi-depleted shoots to Pi-sufficient roots, which is proposed to enhance Pi uptake and translocation during the onset of Pi deficiency.
Abstract: Recently, we showed that microRNA399s (miR399s) control inorganic phosphate (Pi) homeostasis by regulating the expression of PHO2 encoding a ubiquitin-conjugating E2 enzyme 24. Arabidopsis (Arabidopsis thaliana) plants overexpressing miR399 or the pho2 mutant overaccumulate Pi in shoots. The association of Pi translocation and coexpression of miR399s and PHO2 in vascular tissues suggests their involvement in long-distance signaling. In this study, we used reciprocal grafting between wild-type and miR399-overexpressing transgenic plants to dissect the systemic roles of miR399 and PHO2. Arabidopsis rootstocks overexpressing miR399 showed high accumulation of Pi in the wild-type scions because of reduced PHO2 expression in the rootstocks. Although miR399 precursors or expression was not detected, we found a small but substantial amount of mature miR399 in the wild-type rootstocks grafted with transgenic scions, which indicates the movement of miR399 from shoots to roots. Suppression of PHO2 with miR399b or c was less efficient than that with miR399f. Of note, findings in grafted Arabidopsis were also discovered in grafted tobacco (Nicotiana benthamiana) plants. The analysis of the pho1 mutant provides additional support for systemic suppression of PHO2 by the movement of miR399 from Pi-depleted shoots to Pi-sufficient roots. We propose that the long-distance movement of miR399s from shoots to roots is crucial to enhance Pi uptake and translocation during the onset of Pi deficiency. Moreover, PHO2 small interfering RNAs mediated by the cleavage of miR399s may function to refine the suppression of PHO2. The regulation of miR399 and PHO2 via long-distance communication in response to Pi deficiency is discussed.

Journal ArticleDOI
TL;DR: Not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells.
Abstract: Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease caused by a CAG trinucleotide repeat expansion encoding an abnormally long polyglutamine tract in the huntingtin protein. Much has been learnt since the mutation was identified in 1993. We review the functions of wild-type huntingtin. Mutant huntingtin may cause toxicity via a range of different mechanisms. The primary consequence of the mutation is to confer a toxic gain of function on the mutant protein and this may be modified by certain normal activities that are impaired by the mutation. It is likely that the toxicity of mutant huntingtin is revealed after a series of cleavage events leading to the production of N-terminal huntingtin fragment(s) containing the expanded polyglutamine tract. Although aggregation of the mutant protein is a hallmark of the disease, the role of aggregation is complex and the arguments for protective roles of inclusions are discussed. Mutant huntingtin may mediate some of its toxicity in the nucleus by perturbing specific transcriptional pathways. HD may also inhibit mitochondrial function and proteasome activity. Importantly, not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells. It is likely that there is still much to learn about mutant huntingtin toxicity, and important insights have already come and may still come from chemical and genetic screens. Importantly, basic biological studies in HD have led to numerous potential therapeutic strategies.

Journal ArticleDOI
TL;DR: It is demonstrated that specific N-terminal mutant htt fragments associate with mitochondria in Hdh(CAG)150 knock-in mouse brain and that this association increases with age, suggesting that this interaction may be a novel target for therapeutic strategies in HD.
Abstract: Huntington's disease (HD) is caused by polyglutamine (polyQ) expansion in huntingtin (htt), a large (350 kDa) protein that localizes predominantly to the cytoplasm. Proteolytic cleavage of mutant htt yields polyQ-containing N-terminal fragments that are prone to misfolding and aggregation. Disease progression in HD transgenic models correlates with age-related accumulation of soluble and aggregated forms of N-terminal mutant htt fragments, suggesting that multiple forms of mutant htt are involved in the selective neurodegeneration in HD. Although mitochondrial dysfunction is implicated in the pathogenesis of HD, it remains unclear which forms of cytoplasmic mutant htt associate with mitochondria to affect their function. Here we demonstrate that specific N-terminal mutant htt fragments associate with mitochondria in Hdh(CAG)150 knock-in mouse brain and that this association increases with age. The interaction between soluble N-terminal mutant htt and mitochondria interferes with the in vitro association of microtubule-based transport proteins with mitochondria. Mutant htt reduces the distribution and transport rate of mitochondria in the processes of cultured neuronal cells. Reduced ATP level was also found in the synaptosomal fraction isolated from Hdh(CAG)150 knock-in mouse brain. These findings suggest that specific N-terminal mutant htt fragments, before the formation of aggregates, can impair mitochondrial function directly and that this interaction may be a novel target for therapeutic strategies in HD.

Journal ArticleDOI
TL;DR: A 3D structure of CFTR is presented, constructed by molecular modeling and supported biochemically, in which Phe-508 mediates a tertiary interaction between the surface of NBD1 and a cytoplasmic loop (CL4) in the C-terminal membrane-spanning domain (MSD2).
Abstract: Deletion of phenylalanine-508 (Phe-508) from the N-terminal nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) transporter family, disrupts both its folding and function and causes most cystic fibrosis. Most mutant nascent chains do not pass quality control in the ER, and those that do remain thermally unstable, only partially functional, and are rapidly endocytosed and degraded. Although the lack of the Phe-508 peptide backbone diminishes the NBD1 folding yield, the absence of the aromatic side chain is primarily responsible for defective CFTR assembly and channel gating. However, the site of interdomain contact by the side chain is unknown as is the high-resolution 3D structure of the complete protein. Here we present a 3D structure of CFTR, constructed by molecular modeling and supported biochemically, in which Phe-508 mediates a tertiary interaction between the surface of NBD1 and a cytoplasmic loop (CL4) in the C-terminal membrane-spanning domain (MSD2). This crucial cytoplasmic membrane interface, which is dynamically involved in regulation of channel gating, explains the known sensitivity of CFTR assembly to many disease-associated mutations in CL4 as well as NBD1 and provides a sharply focused target for small molecules to treat CF. In addition to identifying a key intramolecular site to be repaired therapeutically, our findings advance understanding of CFTR structure and function and provide a platform for focused biochemical studies of other features of this unique ABC ion channel.

Journal Article
01 Jan 2008-Blood
TL;DR: In this article, the authors generated JAK2-V617F transgenic mice with the sequences encoding the kinase domain placed in the inverse orientation and flanked by antiparallel loxP sites.

Journal ArticleDOI
TL;DR: A Michael acceptor inhibitor (named N3) was found to demonstrate in vitro inactivation of IBV Mpro and potent antiviral activity against IBV in chicken embryos and provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases.
Abstract: Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M(pro)), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) M(pro) and a severe acute respiratory syndrome CoV (SARS-CoV) M(pro) mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M(pro). A monomeric form of IBV M(pro) was identified for the first time in CoV M(pro) structures. A comparison of these two structures to other available M(pro) structures provides new insights for the design of substrate-based inhibitors targeting CoV M(pro)s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M(pro) and was found to demonstrate in vitro inactivation of IBV M(pro) and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M(pro).

Journal ArticleDOI
TL;DR: Characterization of double mutants revealed differing contributions of the type B ARRs to mutant phenotypes, supporting a model in which cytokinin regulates a wide array of downstream responses through the action of a multistep phosphorelay that culminates in transcriptional regulation by ARR1, ARR10, and ARR12.
Abstract: The type B Arabidopsis Response Regulators (ARRs) of Arabidopsis thaliana are transcription factors that act as positive regulators in the two-component cytokinin signaling pathway. We employed a mutant-based approach to perform a detailed characterization of the roles of ARR1, ARR10, and ARR12 in plant growth and development. The most pronounced phenotype was found in the arr1-3 arr10-5 arr12-1 triple loss-of-function mutant, which showed almost complete insensitivity to high levels of exogenously applied cytokinins. The triple mutant exhibited reduced stature due to decreased cell division in the shoot, enhanced seed size, increased sensitivity to light, altered chlorophyll and anthocyanin concentrations, and an aborted primary root with protoxylem but no metaxylem. Microarray analysis revealed that expression of the majority of cytokinin-regulated genes requires the function of ARR1, ARR10, and ARR12. Characterization of double mutants revealed differing contributions of the type B ARRs to mutant phenotypes. Our results support a model in which cytokinin regulates a wide array of downstream responses through the action of a multistep phosphorelay that culminates in transcriptional regulation by ARR1, ARR10, and ARR12.

Journal ArticleDOI
TL;DR: In this paper, the authors show that ABA levels in imbibed seeds are elevated at high temperature and that this increase is correlated with up-regulation of the zeaxanthin epoxidase gene ABA1/ZEP and three 9-cis-epoxycarotenoid dioxygenase genes, NCED2,NCED5, and NCED9.
Abstract: Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) are altered at high temperature. Here, we show that ABA levels in imbibed seeds are elevated at high temperature and that this increase is correlated with up-regulation of the zeaxanthin epoxidase gene ABA1/ZEP and three 9-cis-epoxycarotenoid dioxygenase genes, NCED2, NCED5, and NCED9. Reverse-genetic studies show that NCED9 plays a major and NCED5 and NCED2 play relatively minor roles in high temperature-induced ABA synthesis and germination inhibition. We also show that bioactive GAs stay at low levels at high temperature, presumably through suppression of GA 20-oxidase genes, GA20ox1, GA20ox2, and GA20ox3, and GA 3-oxidase genes, GA3ox1 and GA3ox2. Thermoinhibition-tolerant germination of loss-of-function mutants of GA negative regulators, SPINDLY (SPY) and RGL2, suggests that repression of GA signaling is required for thermoinibition. Interestingly, ABA-deficient aba2-2 mutant seeds show significant expression of GA synthesis genes and repression of SPY expression even at high temperature. In addition, the thermoinhibition-resistant germination phenotype of aba2-1 seeds is suppressed by a GA biosynthesis inhibitor, paclobutrazol. We conclude that high temperature stimulates ABA synthesis and represses GA synthesis and signaling through the action of ABA in Arabidopsis seeds.

Journal ArticleDOI
TL;DR: It is shown that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination and that improvements in plant architecture could be induced by overexpression of wild-type or modified C20 GA 2oxs.
Abstract: Gibberellin 2-oxidases (GA2oxs) regulate plant growth by inactivating endogenous bioactive gibberellins (GAs). Two classes of GA2oxs inactivate GAs through 2β-hydroxylation: a larger class of C19 GA2oxs and a smaller class of C20 GA2oxs. In this study, we show that members of the rice (Oryza sativa) GA2ox family are differentially regulated and act in concert or individually to control GA levels during flowering, tillering, and seed germination. Using mutant and transgenic analysis, C20 GA2oxs were shown to play pleiotropic roles regulating rice growth and architecture. In particular, rice overexpressing these GA2oxs exhibited early and increased tillering and adventitious root growth. GA negatively regulated expression of two transcription factors, O. sativa homeobox 1 and TEOSINTE BRANCHED1, which control meristem initiation and axillary bud outgrowth, respectively, and that in turn inhibited tillering. One of three conserved motifs unique to the C20 GA2oxs (motif III) was found to be important for activity of these GA2oxs. Moreover, C20 GA2oxs were found to cause less severe GA-defective phenotypes than C19 GA2oxs. Our studies demonstrate that improvements in plant architecture, such as semidwarfism, increased root systems and higher tiller numbers, could be induced by overexpression of wild-type or modified C20 GA2oxs.

Journal ArticleDOI
TL;DR: The data suggest AtMKK1-AtMPK6 to be a key module in an ABA-dependent signaling cascade causing H( 2)O(2) production and stress responses, and mkk1 mutant reduced both the sensitivity to ABA during germination and the drought tolerance of seedlings, whereas the AtMkk1 overexpression line showed the opposite responses when compared with the wild type.
Abstract: Catalase controls cellular H 2 O 2 and plays important roles in the adaptation of plants to various stresses, but little is known about the signaling events that lead to the expression of CAT1 and the production of H 2 O 2 . Here we report the dependence of CAT1 expression and H 2 O 2 production on a mitogen-activated protein kinase (MAPK) cascade. CAT1 transcript was induced in an ABA-dependent way and the induction was abolished in the T-DNA insertion mutant mkkl (SALK_015914), while AtMKK1 overexpression significantly enhanced the ABA-induced CAT1 expression and H 2 O 2 production. AtMPK6, another component in the MAPK cascade, was also involved: mpk6 mutant blocked and overexpressing AtMPK6 enhanced the ABA-dependent expression of CAT1 and H 2 O 2 production. The activity of AtMPK6 was increased by ABA in an AtMKK1-dependent manner. These data clearly suggest an ABA-dependent signaling pathway connecting CAT1 expression through a phosphorelay including AtMKK1 and AtMPK6. In further support of this view, mkkl mutant reduced both the sensitivity to ABA during germination and the drought tolerance of seedlings, whereas the AtMKKI overexpression line showed the opposite responses when compared with the wild type. The data suggest AtMKK1-AtMPK6 to be a key module in an ABA-dependent signaling cascade causing H 2 O 2 production and stress responses.

Journal ArticleDOI
TL;DR: The results show that the neuronal and behavioral effects of mutant hDISC1 are consistent with a dominant-negative mechanism, and are similar to some features of schizophrenia, and the present mouse model may facilitate the study of aspects of the pathogenesis of schizophrenia.
Abstract: A strong candidate gene for schizophrenia and major mental disorders, disrupted-in-schizophrenia 1 (DISC1) was first described in a large Scottish family in which a balanced chromosomal translocation segregates with schizophrenia and other psychiatric illnesses. The translocation mutation may result in loss of DISC1 function via haploinsufficiency or dominant-negative effects of a predicted mutant DISC1 truncated protein product. DISC1 has been implicated in neurodevelopment, including maturation of the cerebral cortex. To evaluate the neuronal and behavioral effects of mutant DISC1, the Tet-off system under the regulation of the CAMKII promoter was used to generate transgenic mice with inducible expression of mutant human DISC1 (hDISC1) limited to forebrain regions, including cerebral cortex, hippocampus and striatum. Expression of mutant hDISC1 was not associated with gross neurodevelopmental abnormalities, but led to a mild enlargement of the lateral ventricles and attenuation of neurite outgrowth in primary cortical neurons. These morphological changes were associated with decreased protein levels of endogenous mouse DISC1, LIS1 and SNAP-25. Compared to their sex-matched littermate controls, mutant hDISC1 transgenic male mice exhibited spontaneous hyperactivity in the open field and alterations in social interaction, and transgenic female mice showed deficient spatial memory. The results show that the neuronal and behavioral effects of mutant hDISC1 are consistent with a dominant-negative mechanism, and are similar to some features of schizophrenia. The present mouse model may facilitate the study of aspects of the pathogenesis of schizophrenia.

Journal ArticleDOI
TL;DR: Multiple alleles of mpk4 and mekk1 that exhibit cell death and constitutive defense responses are identified, suggesting that MKK1 and MKK2 function together with MPK4 and MEKK1 in a MAP kinase cascade to negatively regulate innate immune responses in plants.
Abstract: Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant innate immune responses. In a genetic screen to search for mutants with constitutive defense responses, we identified multiple alleles of mpk4 and mekk1 that exhibit cell death and constitutive defense responses. Bimolecular fluorescence complementation (BiFC) analysis showed that both MPK4 and MEKK1 interact with MKK1 and MKK2, two closely related MAPK kinases. mkk1 and mkk2 single mutant plants do not have obvious mutant phenotypes. To test whether MKK1 and MKK2 function redundantly, mkk1 mkk2 double mutants were generated. The mkk1 mkk2 double mutant plants die at seedling stage and the seedling-lethality phenotype is temperature-dependent. Similar to the mpk4 and mekk1 mutants, the mkk1 mkk2 double mutant seedlings accumulate high levels of H2O2, display spontaneous cell death, constitutively express Pathogenesis Related (PR) genes and exhibit pathogen resistance. In addition, activation of MPK4 by flg22 is impaired in the mkk1 mkk2 double mutants, suggesting that MKK1 and MKK2 function together with MPK4 and MEKK1 in a MAP kinase cascade to negatively regulate innate immune responses in plants.

Journal ArticleDOI
TL;DR: The regulation of mutant p53 stability by Mdm2, an E3 ubiquitin ligase that targets p53 for degradation, and p16INK4a, a member of the Rb tumor suppressor pathway are examined to indicate that drugs aimed at activating wild-type p53 will also stabilize Mutant p53 with dire consequences.
Abstract: The p53 tumor suppressor is often disrupted in human cancers by the acquisition of missense mutations. We generated mice with a missense mutation at codon 172 that mimics the p53R175H hot spot mutation in human cancer. p53 homozygous mutant mice have unstable mutant p53 in normal cells and stabilize mutant p53 in some but not all tumors. To investigate the significance of these data, we examined the regulation of mutant p53 stability by Mdm2, an E3 ubiquitin ligase that targets p53 for degradation, and p16INK4a, a member of the Rb tumor suppressor pathway. Mice lacking Mdm2 or p16INK4a stabilized mutant p53, and revealed an earlier age of tumor onset than p53 mutant mice and a gain-of-function metastatic phenotype. Analysis of tumors from p53 homozygous mutant mice with stable p53 revealed defects in the Rb pathway. Additionally, ionizing radiation stabilizes wild-type and mutant p53. Thus, the stabilization of mutant p53 is not a given but it is a prerequisite for its gain-of-function phenotype. Since mutant p53 stability mimics that of wild-type p53, these data indicate that drugs aimed at activating wild-type p53 will also stabilize mutant p53 with dire consequences.

Journal ArticleDOI
TL;DR: The Y220C mutant is an excellent “druggable” target for developing and testing novel anticancer drugs based on protein stabilization and some general principles in relationships between binding constants, raising of melting temperatures, and increase of protein half-lives by stabilizing ligands are pointed out.
Abstract: The tumor suppressor p53 is mutationally inactivated in ≈50% of human cancers. Approximately one-third of the mutations lower the melting temperature of the protein, leading to its rapid denaturation. Small molecules that bind to those mutants and stabilize them could be effective anticancer drugs. The mutation Y220C, which occurs in ≈75,000 new cancer cases per annum, creates a surface cavity that destabilizes the protein by 4 kcal/mol, at a site that is not functional. We have designed a series of binding molecules from an in silico analysis of the crystal structure using virtual screening and rational drug design. One of them, a carbazole derivative (PhiKan083), binds to the cavity with a dissociation constant of ≈150 μM. It raises the melting temperature of the mutant and slows down its rate of denaturation. We have solved the crystal structure of the protein–PhiKan083 complex at 1.5-A resolution. The structure implicates key interactions between the protein and ligand and conformational changes that occur on binding, which will provide a basis for lead optimization. The Y220C mutant is an excellent “druggable” target for developing and testing novel anticancer drugs based on protein stabilization. We point out some general principles in relationships between binding constants, raising of melting temperatures, and increase of protein half-lives by stabilizing ligands. NMR screen oncogenic mutant protein stabilization virtual drug design crystal structure

Journal ArticleDOI
TL;DR: Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putresCine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression.
Abstract: The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression.

Journal ArticleDOI
TL;DR: Results suggest that ABA deficiency in the tomato mutant hp3 leads to enlargement of the plastid compartment size, probably by increasing plastids division, thus enabling greater biosynthesis and a higher storage capacity of the pigments.
Abstract: Carotenoids are present in most tissues of higher plants where they play a variety of essential roles. To study the regulation of carotenoid biosynthesis, we have isolated novel mutations in tomato (Solanum lycopersicum) with altered pigmentation of fruit or flowers. Here we describe the isolation and analysis of a tomato mutant, high-pigment 3 (hp3), that accumulates 30% more carotenoids in the mature fruit. Higher concentrations of carotenoids and chlorophyll were also measured in leaves and the pericarp of green fruit. The mutation in hp3 had occurred in the gene for zeaxanthin epoxidase (Zep), which converts zeaxanthin to violaxanthin. Consequently, leaves of the mutant lack violaxanthin and neoxanthin, and flowers contain only minute quantities of these xanthophylls. The concentration in the hp3 mutant of abscisic acid (ABA), which is derived from xanthophylls, is 75% lower than the normal level, making hp3 an ABA-deficient mutant. The plastid compartment size in fruit cells is at least twofold larger in hp3 plants compared with the wild-type. The transcript level in the green fruit of FtsZ, which encodes a tubulin-like protein involved in plastid division, is 60% higher in hp3 than in the wild-type, suggesting that increased plastid division is responsible for this phenomenon. Elevated fruit pigmentation and plastid compartment size were also observed in the ABA-deficient mutants flacca and sitiens. Taken together, these results suggest that ABA deficiency in the tomato mutant hp3 leads to enlargement of the plastid compartment size, probably by increasing plastid division, thus enabling greater biosynthesis and a higher storage capacity of the pigments.