scispace - formally typeset
Search or ask a question

Showing papers on "Mutant published in 2016"


Journal ArticleDOI
26 Apr 2016-PLOS ONE
TL;DR: The results indicate that gene modification via CRISPR/Cas9 is a useful approach for enhancing blast resistance in rice and targeted multiple sites within OsERF922 by using Cas9/Multi-target-sgRNAs to obtain plants harboring mutations at two or three sites.
Abstract: Rice blast is one of the most destructive diseases affecting rice worldwide. The adoption of host resistance has proven to be the most economical and effective approach to control rice blast. In recent years, sequence-specific nucleases (SSNs) have been demonstrated to be powerful tools for the improvement of crops via gene-specific genome editing, and CRISPR/Cas9 is thought to be the most effective SSN. Here, we report the improvement of rice blast resistance by engineering a CRISPR/Cas9 SSN (C-ERF922) targeting the OsERF922 gene in rice. Twenty-one C-ERF922-induced mutant plants (42.0%) were identified from 50 T0 transgenic plants. Sanger sequencing revealed that these plants harbored various insertion or deletion (InDel) mutations at the target site. We showed that all of the C-ERF922-induced allele mutations were transmitted to subsequent generations. Mutant plants harboring the desired gene modification but not containing the transferred DNA were obtained by segregation in the T1 and T2 generations. Six T2 homozygous mutant lines were further examined for a blast resistance phenotype and agronomic traits, such as plant height, flag leaf length and width, number of productive panicles, panicle length, number of grains per panicle, seed setting percentage and thousand seed weight. The results revealed that the number of blast lesions formed following pathogen infection was significantly decreased in all 6 mutant lines compared with wild-type plants at both the seedling and tillering stages. Furthermore, there were no significant differences between any of the 6 T2 mutant lines and the wild-type plants with regard to the agronomic traits tested. We also simultaneously targeted multiple sites within OsERF922 by using Cas9/Multi-target-sgRNAs (C-ERF922S1S2 and C-ERF922S1S2S3) to obtain plants harboring mutations at two or three sites. Our results indicate that gene modification via CRISPR/Cas9 is a useful approach for enhancing blast resistance in rice.

541 citations


01 Jan 2016
TL;DR: The nodulation characteristics of soybean (Glycine max) mutant nts382 are described in this article, where the mutant nodulated significantly more than the parent cultivar Bragg in the presence and absence of several combined nitrogen sources.
Abstract: The nodulation characteristics of soybean (Glycine max) mutant nts382 are described. The mutant nodulated significantly more than the parent cultivar Bragg in the presence and absence of several combined nitrogen sources (KNO3, urea, NH4C1, and NH4N03). The number of nodules on the tap root and on lateral roots was increased in the mutant line. In the presence of KN03 and urea, nitrogenase activity was considerably higher in nts382 than in Bragg. Mutant plants were generally smaller than wild-type plants. Although nts382 is a supernodulator, inoculation with Rhizobium japonicum was necessary to induce nodule formation and both trial strains CB1809 (= USDA136) and USDA110 elicited the mutant phenotype. Segregation of M3 progeny derived from a M2 wild-type plant indicated that the mutant character is inherited as a Mendelian recessive. The mutant is discussed in the context of regulation of nodulation and of hypotheses that have been proposed to explain nitrate inhibition of nodulation.

346 citations


Journal ArticleDOI
TL;DR: High-throughput methods are developed that enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage and identify mutagenic insertion sites and physical coordinates in collections, and validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences.
Abstract: The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.

302 citations


Journal ArticleDOI
TL;DR: Efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)– CRISPR-associated protein 9 (Cas9) system are reported.
Abstract: Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.

293 citations


Journal ArticleDOI
10 Mar 2016-Blood
TL;DR: This study provides a novel signaling paradigm, whereby a mutated chaperone constitutively activates cytokine receptor signaling, and knocking down either MPL/TpoR or JAK2 in megakaryocytic progenitors from patients carrying CALR mutations inhibited cytokine-independent megakARYocytic colony formation.

265 citations


Journal ArticleDOI
TL;DR: The results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo.
Abstract: CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo.

246 citations


Journal ArticleDOI
TL;DR: Using genome editing mediated by a truncated gRNA (tru-gRNA)/Cas9 combination, new alleles for OST2, a proton pump in Arabidopsis are generated, showing that high expression in the germ line can produce bi-allelic mutations.
Abstract: Genome editing using the CRISPR/Cas9 system can be used to modify plant genomes, however, improvements in specificity and applicability are still needed in order for the editing technique to be useful in various plant species. Here, using genome editing mediated by a truncated gRNA (tru-gRNA)/Cas9 combination, we generated new alleles for OST2, a proton pump in Arabidopsis, with no off-target effects. By following expression of Cas9 and the tru-gRNAs, newly generated mutations in CRIPSR/Cas9 transgenic plants were detected with high average mutation rates of up to 32.8% and no off-target effects using constitutive promoter. Reducing nuclear localization signals in Cas9 decreased the mutation rate. In contrast, tru-gRNA Cas9 cassettes driven by meristematic- and reproductive-tissue-specific promoters increased the heritable mutation rate in Arabidopsis, showing that high expression in the germ line can produce bi-allelic mutations. Finally, the new mutant alleles obtained for OST2 exhibited altered stomatal closing in response to environmental conditions. These results suggest further applications in molecular breeding to improve plant function using optimized plant CRISPR/Cas9 systems.

239 citations


Journal ArticleDOI
TL;DR: The findings indicate that dGBA1b plays an important role in the metabolism of protein aggregates, but that the deleterious consequences of mutations in dG BA1b are largely independent of α-synuclein.
Abstract: Mutations in the glucosidase, beta, acid (GBA1) gene cause Gaucher's disease, and are the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB) excluding variants of low penetrance. Because α-synuclein-containing neuronal aggregates are a defining feature of PD and DLB, it is widely believed that mutations in GBA1 act by enhancing α-synuclein toxicity. To explore this hypothesis, we deleted the Drosophila GBA1 homolog, dGBA1b, and compared the phenotypes of dGBA1b mutants in the presence and absence of α-synuclein expression. Homozygous dGBA1b mutants exhibit shortened lifespan, locomotor and memory deficits, neurodegeneration, and dramatically increased accumulation of ubiquitinated protein aggregates that are normally degraded through an autophagic mechanism. Ectopic expression of human α-synuclein in dGBA1b mutants resulted in a mild enhancement of dopaminergic neuron loss and increased α-synuclein aggregation relative to controls. However, α-synuclein expression did not substantially enhance other dGBA1b mutant phenotypes. Our findings indicate that dGBA1b plays an important role in the metabolism of protein aggregates, but that the deleterious consequences of mutations in dGBA1b are largely independent of α-synuclein. Future work with dGBA1b mutants should reveal the mechanism by which mutations in dGBA1b lead to accumulation of protein aggregates, and the potential influence of this protein aggregation on neuronal integrity.

234 citations


Journal ArticleDOI
TL;DR: The power of the novel strategy of inactivating the mutant allele using haplotype-specific CRISPR/Cas9 target sites in Huntington's disease, a late-onset neurodegenerative disorder due to a toxic dominant gain-of-function CAG expansion mutation, is demonstrated.
Abstract: A comprehensive genetics-based precision medicine strategy to selectively and permanently inactivate only mutant, not normal allele, could benefit many dominantly inherited disorders. Here, we demonstrate the power of our novel strategy of inactivating the mutant allele using haplotype-specific CRISPR/Cas9 target sites in Huntington's disease (HD), a late-onset neurodegenerative disorder due to a toxic dominant gain-of-function CAG expansion mutation. Focusing on improving allele specificity, we combined extensive knowledge of huntingtin (HTT) gene haplotype structure with a novel personalized allele-selective CRISPR/Cas9 strategy based on Protospacer Adjacent Motif (PAM)-altering SNPs to target patient-specific CRISPR/Cas9 sites, aiming at mutant HTT allele-specific inactivation for a given diplotype. As proof-of-principle, simultaneously using two CRISPR/Cas9 guide RNAs (gRNAs) that depend on PAM sites generated by SNP alleles on the mutant chromosome, we selectively excised ~44 kb DNA spanning promoter region, transcription start site, and the CAG expansion mutation of the mutant HTT gene, resulting in complete inactivation of the mutant allele without impacting the normal allele. This excision on the disease chromosome completely prevented the generation of mutant HTT mRNA and protein, unequivocally indicating permanent mutant allele-specific inactivation of the HD mutant allele. The perfect allele selectivity with broad applicability of our strategy in disorders with diverse disease haplotypes should also support precision medicine through inactivation of many other gain-of-function mutations.

218 citations


Journal ArticleDOI
TL;DR: MutChromSeq, a complexity reduction approach based on flow sorting and sequencing of mutant chromosomes, to identify induced mutations by comparison to parental chromosomes, enables reference-free forward genetics in barley and wheat, thus opening up their pan-genomes to functional genomics.
Abstract: Identification of causal mutations in barley and wheat is hampered by their large genomes and suppressed recombination. To overcome these obstacles, we have developed MutChromSeq, a complexity reduction approach based on flow sorting and sequencing of mutant chromosomes, to identify induced mutations by comparison to parental chromosomes. We apply MutChromSeq to six mutants each of the barley Eceriferum-q gene and the wheat Pm2 genes. This approach unambiguously identified single candidate genes that were verified by Sanger sequencing of additional mutants. MutChromSeq enables reference-free forward genetics in barley and wheat, thus opening up their pan-genomes to functional genomics.

215 citations


Journal ArticleDOI
TL;DR: It is demonstrated that expression of mutant CALR alone is sufficient to engender MPN in mice and recapitulates the disease phenotype of patients with CALR-mutant MPN, and the positive charge of the CALR mutant C-terminus is necessary to transform hematopoietic cells by enabling binding between Mutant CALR and the thrombopoetin receptor MPL.
Abstract: Somatic mutations in calreticulin ( CALR ) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN), but the mechanism by which mutant CALR is oncogenic remains unclear. Here, we demonstrate that expression of mutant CALR alone is sufficient to engender MPN in mice and recapitulates the disease phenotype of patients with CALR -mutant MPN. We further show that the thrombopoietin receptor MPL is required for mutant CALR-driven transformation through JAK–STAT pathway activation, thus rendering mutant CALR-transformed hematopoietic cells sensitive to JAK2 inhibition. Finally, we demonstrate that the oncogenicity of mutant CALR is dependent on the positive electrostatic charge of the C-terminus of the mutant protein, which is necessary for physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel paradigm of cancer pathogenesis and reveal how CALR mutations induce MPN. Significance: The mechanism by which CALR mutations induce MPN remains unknown. In this report, we show that the positive charge of the CALR mutant C-terminus is necessary to transform hematopoietic cells by enabling binding between mutant CALR and the thrombopoietin receptor MPL. Cancer Discov; 6(4); 368–81. ©2016 AACR . See related commentary by Stanley and Steidl, [p. 344][1] . This article is highlighted in the In This Issue feature, [p. 331][2] [1]: /lookup/volpage/6/344?iss=4 [2]: /lookup/volpage/6/331?iss=4

Journal ArticleDOI
TL;DR: A CRISPR/Cas9 system enabling rapid and efficient genome editing in P .
Abstract: Phytophthora sojae is an oomycete pathogen of soybean. As a result of its economic importance, P. sojae has become a model for the study of oomycete genetics, physiology and pathology. The lack of efficient techniques for targeted mutagenesis and gene replacement have long hampered genetic studies of pathogenicity in Phytophthora species. Here, we describe a CRISPR/Cas9 system enabling rapid and efficient genome editing in P. sojae. Using the RXLR effector gene Avr4/6 as a target, we observed that, in the absence of a homologous template, the repair of Cas9-induced DNA double-strand breaks (DSBs) in P. sojae was mediated by non-homologous end-joining (NHEJ), primarily resulting in short indels. Most mutants were homozygous, presumably as a result of gene conversion triggered by Cas9-mediated cleavage of non-mutant alleles. When donor DNA was present, homology-directed repair (HDR) was observed, which resulted in the replacement of Avr4/6 with the NPT II gene. By testing the specific virulence of several NHEJ mutants and HDR-mediated gene replacements in soybean, we have validated the contribution of Avr4/6 to recognition by soybean R gene loci, Rps4 and Rps6, but also uncovered additional contributions to resistance by these two loci. Our results establish a powerful tool for the study of functional genomics in Phytophthora, which provides new avenues for better control of this pathogen.

Journal ArticleDOI
TL;DR: The design and characterization of a germ-line-specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes is reported, constructed using a SPOROCYTELESS genomic expression cassette, and the results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population.
Abstract: The Streptococcus-derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single-guide RNA (sgRNA) for target DNA recognition and the CRISPR-associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ-line-specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ-line-specific promoters (pDD45-GT and pLAT52-GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population.

Journal ArticleDOI
TL;DR: Combining the mutant p53-inactivating agent APR-246 (PRIMA-1MET) with the proteasome inhibitor carfilzomib is effective in overcoming chemoresistance in triple-negative breast cancer cells, creating a therapeutic opportunity for treatment of solid tumours and metastasis with mutant p53.
Abstract: In cancer, the tumour suppressor gene TP53 undergoes frequent missense mutations that endow mutant p53 proteins with oncogenic properties. Until now, a universal mutant p53 gain-of-function program has not been defined. By means of multi-omics: proteome, DNA interactome (chromatin immunoprecipitation followed by sequencing) and transcriptome (RNA sequencing/microarray) analyses, we identified the proteasome machinery as a common target of p53 missense mutants. The mutant p53–proteasome axis globally affects protein homeostasis, inhibiting multiple tumour-suppressive pathways, including the anti-oncogenic KSRP–microRNA pathway. In cancer cells, p53 missense mutants cooperate with Nrf2 (NFE2L2) to activate proteasome gene transcription, resulting in resistance to the proteasome inhibitor carfilzomib. Combining the mutant p53-inactivating agent APR-246 (PRIMA-1MET) with the proteasome inhibitor carfilzomib is effective in overcoming chemoresistance in triple-negative breast cancer cells, creating a therapeutic opportunity for treatment of solid tumours and metastasis with mutant p53. Walerych et al. show that p53 missense mutants upregulate the proteasome and increase breast cancer cell resistance to proteasome inhibitors. Combined inhibition of p53 mutants and the proteasome leads to increased therapeutic efficacy.

Journal ArticleDOI
10 Jun 2016-Science
TL;DR: It is shown that H3K36 methylation is reduced globally in human chondroblastomas and inchondrocytes harboring the same genetic mutation, due to inhibition of at least two H3 K36 methyltransferases, MMSET and SETD2, by the H3.3K 36M mutant proteins.
Abstract: More than 90% of chondroblastomas contain a heterozygous mutation replacing lysine-36 with methionine-36 (K36M) in the histone H3 variant H3.3. Here we show that H3K36 methylation is reduced globally in human chondroblastomas and in chondrocytes harboring the same genetic mutation, due to inhibition of at least two H3K36 methyltransferases, MMSET and SETD2, by the H3.3K36M mutant proteins. Genes with altered expression as well as H3K36 di- and trimethylation in H3.3K36M cells are enriched in cancer pathways. In addition, H3.3K36M chondrocytes exhibit several hallmarks of cancer cells, including increased ability to form colonies, resistance to apoptosis, and defects in differentiation. Thus, H3.3K36M proteins reprogram the H3K36 methylation landscape and contribute to tumorigenesis, in part through altering the expression of cancer-associated genes.

Journal ArticleDOI
TL;DR: Using transcriptomics and reverse genetics, a previously uncharacterized gene that encodes a 2-oxoglutarate and Fe(II)-dependent dioxygenase involved in strigolactone production downstream of MAX1 is discovered and identified as LATERAL BRANCHING OXIDOREDUCTASE (LBO).
Abstract: Strigolactones are a group of plant compounds of diverse but related chemical structures. They have similar bioactivity across a broad range of plant species, act to optimize plant growth and development, and promote soil microbe interactions. Carlactone, a common precursor to strigolactones, is produced by conserved enzymes found in a number of diverse species. Versions of the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450 from rice and Arabidopsis thaliana make specific subsets of strigolactones from carlactone. However, the diversity of natural strigolactones suggests that additional enzymes are involved and remain to be discovered. Here, we use an innovative method that has revealed a missing enzyme involved in strigolactone metabolism. By using a transcriptomics approach involving a range of treatments that modify strigolactone biosynthesis gene expression coupled with reverse genetics, we identified LATERAL BRANCHING OXIDOREDUCTASE (LBO), a gene encoding an oxidoreductase-like enzyme of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. Arabidopsis lbo mutants exhibited increased shoot branching, but the lbo mutation did not enhance the max mutant phenotype. Grafting indicated that LBO is required for a graft-transmissible signal that, in turn, requires a product of MAX1. Mutant lbo backgrounds showed reduced responses to carlactone, the substrate of MAX1, and methyl carlactonoate (MeCLA), a product downstream of MAX1. Furthermore, lbo mutants contained increased amounts of these compounds, and the LBO protein specifically converts MeCLA to an unidentified strigolactone-like compound. Thus, LBO function may be important in the later steps of strigolactone biosynthesis to inhibit shoot branching in Arabidopsis and other seed plants.

01 Jan 2016
TL;DR: In this paper, the recA gene of Escherichia coli has been purified to near homogeneity by a simple three-step procedure, and it was shown that recA protein catalyzes DNA renaturation or aggregation at 28?C, but does so at 37?C.
Abstract: The product of the recA gene of Escherichia coli has been purified to near-homogeneity by a simple three- step procedure. Incubation of the recA protein with comple- mentary single strands of DNA, Mg2e+ and ATP results in the rapid formation of large DNA aggregates containing many branched structures. As judged by resistance to SI nuclease and by electron microscopy, these aggregates contain both duplex and single-stranded regions. The renaturation and aggregation of DNA catalyzed by the recA protein is coupled to the hydrol- ysis of ATP. The recA protein purified from a cold-sensitive recA mutant does not catalyze DNA renaturation or aggregation at 28?C, but does so at 37?C, a finding which correlates with the recombination defect observed in vivo and indicates that this activity is an intrinsic function of the recA protein. These results suggest that the recA protein plays a specific role in strand transfer during recombination and possibly in postreplication repair of damaged DNA.

Journal ArticleDOI
TL;DR: It is reported that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty A cylinder-CoA esters, the substrates for lipid synthesis and β-oxidation.

01 Jan 2016
TL;DR: Three mutant murine T-lymphosarcoma cell lines with altered dNTP pools and increased rates of spontaneous mutation are described, which are shown to be characteristic of the cell line and independent of the two genetic markers examined.
Abstract: Recent studies of in vitro DNA synthesis have shown that fidelity of replication is influenced by the relative con- centrations of deoxyribonucleoside triphosphates (dNTPs). Sev- eral investigators have used reconstituted prokaryotic replication systems to copy defined natural templates and have shown that specific incorporation errors can be induced by an appropriate bias of the precursor pools. The recent demonstration of mutator phenotypes among mutant Chinese hamster ovary cell lines with altered intracellular dNTP pools has allowed extension of the in vitro observations to eukaryotic replication and repair mecha- nisms. We describe here three mutant murine T-lymphosarcoma cell lines with altered dNTP pools and increased rates of sponta- neous mutation to dexamethasone resistance and 6-thioguanine resistance. Unlike previously described mammalian cells with mutator phenotypes, these three lines have demonstrable defects in known structural gene products. Two of these cell lines are het- erozygous for mutations affecting the MI subunit of ribonucleoside diphosphate reductase; the other mutant is deficient in deoxycy- tidylate deaminase. In each cell line these mutations result in de- ranged endogenous dNTP pools and increased rates of sponta- neous mutation, which are shown to be characteristic of the cell line and independent of the two genetic markers examined. Fur- thermore, normalization of the dNTP pools of the deaminase-de- ficient cells suppresses its mutator phenotype. Thus, abnormal dNTP pools seem to cause enhanced mutagenesis in mammalian cells.


Journal ArticleDOI
TL;DR: This method solves the problem of mosaicism/allele complexity in founder mutant embryos or mice generated by the CRIPSR/Cas9 system by introducing Cas9 protein and sgRNA into in vitro fertilized (IVF) zygotes by electroporation.

Journal ArticleDOI
TL;DR: In depth analysis were carried out for understanding the underlying molecular mechanism using techniques viz. molecular dynamics, principal component analysis, residue interaction network and free energy landscape analysis, which showed that the mutated residues changed the overall conformation of the system along with the residue-residue interaction network.
Abstract: Polycomb group (PcG) proteins have been observed to maintain the pattern of histone by methylation of the histone tail responsible for the gene expression in various cellular processes, of which enhancer of zeste homolog 2 (EZH2) acts as tumor suppressor. Overexpression of EZH2 results in hyper activation found in a variety of cancer. Point mutation on two important residues were induced and the results were compared between the wild type and mutant EZH2. The mutation of Y641 and A677 present in the active region of the protein alters the interaction of the top ranked compound with the newly modeled binding groove of the SET domain, giving a GLIDE score of −12.26 kcal/mol, better than that of the wild type at −11.664 kcal/mol. In depth analysis were carried out for understanding the underlying molecular mechanism using techniques viz. molecular dynamics, principal component analysis, residue interaction network and free energy landscape analysis, which showed that the mutated residues changed the overall conformation of the system along with the residue-residue interaction network. The insight from this study could be of great relevance while designing new compounds for EZH2 enzyme inhibition and the effect of mutation on the overall binding mechanism of the system.

Journal ArticleDOI
TL;DR: It is discovered that mice expressing endogenous mutant IDH1 have reduced numbers of hematopoietic stem cells (HSCs) in contrast to Tet2 knockout (TET2-KO) mice, which may have implications for treatment of IDH-mutant leukemia.

Journal ArticleDOI
TL;DR: Recent progress is summarized in understanding of the role of mutant IDH in tumorigenesis as R-2-HG competitively inhibits α-KG–dependent enzymes which play crucial roles in gene regulation and tissue homeostasis.
Abstract: IDH1 and IDH2 are homodimeric enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (α-KG) and concomitantly produce reduced NADPH from NADP(+) Mutations in the genes encoding IDH1 and IDH2 have recently been found in a variety of human cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. The mutant protein loses its normal enzymatic activity and gains a new ability to produce the "oncometabolite" R(-)-2-hydroxyglutarate (R-2-HG). R-2-HG competitively inhibits α-KG-dependent enzymes which play crucial roles in gene regulation and tissue homeostasis. Expression of mutant IDH impairs cellular differentiation in various cell lineages and promotes tumor development in cooperation with other cancer genes. First-generation inhibitors of mutant IDH have entered clinical trials, and have shown encouraging results in patients with IDH-mutant AML. This article summarizes recent progress in our understanding of the role of mutant IDH in tumorigenesis.Clin Cancer Res; 22(8); 1837-42. ©2016 AACR.

Journal ArticleDOI
TL;DR: Successful in vivo application of the CRISPR/Cas9 system confirms its efficacy as a genetic engineering tool in photoreceptor cells as well as significant reduction of the mutant RHO protein.
Abstract: The bacterial CRISPR/Cas system has proven to be an efficient tool for genetic manipulation in various organisms. Here we show the application of CRISPR-Cas9 technology to edit the human Rhodopsin (RHO) gene in a mouse model for autosomal dominant Retinitis Pigmentosa. We designed single or double sgRNAs to knock-down mutant RHO expression by targeting exon 1 of the RHO gene carrying the P23H dominant mutation. By delivering Cas9 and sgRNAs in a single plasmid we induced an efficient gene editing in vitro, in HeLa cells engineered to constitutively express the P23H mutant RHO allele. Similarly, after subretinal electroporation of the CRISPR/Cas9 plasmid expressing two sgRNAs into P23H RHO transgenic mice, we scored specific gene editing as well as significant reduction of the mutant RHO protein. Successful in vivo application of the CRISPR/Cas9 system confirms its efficacy as a genetic engineering tool in photoreceptor cells.

01 Jan 2016
TL;DR: The Eker mutation was first reported by R. Eker in 1954 as discussed by the authors and is an example of a Mendelian dominant predisposition to a specific cancer in an experimental animal.
Abstract: Hereditary renal carcinoma (RC) in the rat, originally reported by R. Eker in 1954, is an example of a Mendelian dominant predisposition to a specific cancer in an experimental animal. At the histologic level, RCs develop through multiple stages from early preneoplastic lesions (e.g., atypical tubules) to adenomas in virtually all heterozygotes by the age of 1 year. The homozygous mutant condition is lethal at =10 days of fetal life. Ionizing radiation induces additional tumors in a linear dose-response relationship, suggesting that in heterozygotes two events (one inherited, one somatic) are necessary to produce tumors, and that the predisposing gene is a tumor suppressor gene. No genetic linkage has yet been found between the Eker mutation and rat DNA sequences homologous to those in human chromosome 3p, the presumed site of the putative tumor suppressor gene responsible for human RC. Nonrandom loss of rat chromosome 5 in RC-derived cell lines is sometimes associated with homozygous deletion of the inter- feron gene loci at rat chromosome bands 5q31-q33. Since this locus is not linked with the predisposing inherited gene in the Eker rat, it probably represents a second tumor suppressor gene involved in tumor progression.

01 Jan 2016
TL;DR: Konopka et al. as mentioned in this paper showed that per" is completely accounted for by a nonsense mutation in the third coding exon of a 4.5-kilobase RNA transcribed from this locus.
Abstract: The per?l and the pers mutations in Droso- phila melanogaster, which seem to eliminate or speed up, respectively, the clocks underlying biological rhythmicity, were mapped to single nucleotides. Chimeric DNA fragments con- sisting of well-defined wild-type plus mutant DNA subsegments were constructed, introduced into flies by germ-line transfor- mation, and assayed for biological activity. These experiments localized both per?1 and pers to a 1.7-kilobase DNA fragment that is mostly coding DNA. Sequencing of this subsegment from each mutant showed that per" is completely accounted for by a nonsense mutation in the third coding exon of a 4.5-kilobase RNA transcribed from this locus. The pers mutation is also a single nucleotide substitution, in the fourth coding exon, which results in a serine-to-asparagine substitution in the per gene protein product. The functional significance of these changes is discussed with reference to the phenotypes of the two muta- tions. The period gene of Drosophila melanogaster is defined by some of the most interesting behavioral mutations isolated to date. These mutations affect biological rhythms either by eliminating periodic eclosion or behavior or by causing dramatic changes in rhythmic phenotypes (for review see refs. 1 and 2). The original per mutations were induced by Konopka and Benzer (3). Two of the mutants were pers and per L, isolated with respect to circadian eclosion rhythms whose periods are about 5 hr shorter or longer, respectively, than the normal 24 hr. The per' mutant was also recovered (3), based on aperiodic eclosion. This mutation is now called per?', because there are currently four independently isolat- ed "arrhythmic" mutations at this locus (refs. 4 and 5; R. J. Konopka and M.H., unpublished results). Detailed genetic and phenotypic analyses of these "clock" mutants suggested that per'l may be a null mutation, behav- ing like a deletion of this apparently nonvital locus within segment 3B1-2 of the X chromosome (6, 7). Manipulations of the dosage of the wild-type allele and the per' allele suggested that the increased per activity seemingly associated with per' is caused by a qualitative change in the activity of the gene

Journal ArticleDOI
TL;DR: It is suggested that GABA accumulation during drought is a stress-specific response and its accumulation induces the regulation of stomatal opening thereby prevents loss of water.

Journal ArticleDOI
TL;DR: Analysis of the dog1 and dog1 abi3 mutants revealed additional seed phenotypes and it is hypothesized that DOG1 function is not limited to dormancy but that it is required for multiple aspects of seed maturation, in part by interfering with ABA signalling components.
Abstract: The seed expressed gene DELAY OF GERMINATION (DOG) 1 is absolutely required for the induction of dormancy. Next to a non-dormant phenotype, the dog1-1 mutant is also characterized by a reduced seed longevity suggesting that DOG1 may affect additional seed processes as well. This aspect however, has been hardly studied and is poorly understood. To uncover additional roles of DOG1 in seeds we performed a detailed analysis of the dog1 mutant using both transcriptomics and metabolomics to investigate the molecular consequences of a dysfunctional DOG1 gene. Further, we used a genetic approach taking advantage of the weak aba insensitive (abi) 3-1 allele as a sensitized genetic background in a cross with dog1-1. DOG1 affects the expression of hundreds of genes including LATE EMBRYOGENESIS ABUNDANT and HEAT SHOCK PROTEIN genes which are affected by DOG1 partly via control of ABI5 expression. Furthermore, the content of a subset of primary metabolites, which normally accumulate during seed maturation, was found to be affected in the dog1-1 mutant. Surprisingly, the abi3-1 dog1-1 double mutant produced green seeds which are highly ABA insensitive, phenocopying severe abi3 mutants, indicating that dog1-1 acts as an enhancer of the weak abi3-1 allele and thus revealing a genetic interaction between both genes. Analysis of the dog1 and dog1 abi3 mutants revealed additional seed phenotypes and therefore we hypothesize that DOG1 function is not limited to dormancy but that it is required for multiple aspects of seed maturation, in part by interfering with ABA signalling components.

Journal ArticleDOI
TL;DR: The results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis.
Abstract: The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis.