scispace - formally typeset
Search or ask a question
Topic

Mutant

About: Mutant is a research topic. Over the lifetime, 74520 publications have been published within this topic receiving 3477079 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Novel Arabidopsis mutants with lowered levels of endogenous abscisic acid (ABA) showed a phenotype that is known to be characteristic for ABA-deficiency: a reduced seed dormancy and excessive water loss, leading to a wilty phenotype.
Abstract: Novel Arabidopsis mutants with lowered levels of endogenous abscisic acid (ABA) were isolated. These were selected in a screen for germination in the presence of the gibberellin biosynthesis inhibitor paclobutrazol. Another mutant was isolated in a screen for NaCl tolerance. The ABA-deficiency was caused by two monogenic, recessive mutations, aba2 and aba3, that were both located on chromosome 1. The mutants showed a phenotype that is known to be characteristic for ABA-deficiency: a reduced seed dormancy and excessive water loss, leading to a wilty phenotype. Double mutant analysis, combining different aba mutations, indicated the leaky nature of the mutations.

467 citations

Journal ArticleDOI
TL;DR: It is proposed that an additional molecule absent from 174XCEM.T2 and encoded by an HLA‐linked gene is necessary for efficient assembly of class I antigen subunits.
Abstract: Biosynthesis of HLA class I antigens has been studied in a variant B-LCLxT-LCL hybrid, 174XCEM.T2. This cell line encodes HLA-A2 and -B5, but expresses only small amounts of A2 antigen and undetectable B5 antigen at the cell surface due to a mutation inactivating a trans-acting regulatory gene encoded within the class II region of the human major histocompatibility complex. Northern blot analysis with HLA-A- and HLA-B-specific probes shows that 174XCEM.T2 synthesizes quantities of A and B locus mRNA comparable with its class I antigen-positive parent cell line. Immune precipitation studies indicate that 174XCEM.T2 synthesizes normal HLA heavy chains and beta 2-microglobulin which fail to form dimers. The heavy chains are N-glycosylated normally, but processing of the glycan to the complex form does not occur. In addition, free heavy chains in this cell line are not phosphorylated. Thus, the majority of class I heavy chains in 174XCEM.T2 do not combine with beta 2-microglobulin, and are not processed or transported to the cell surface. As both subunits are synthesized in normal amounts, we propose that an additional molecule absent from 174XCEM.T2 and encoded by an HLA-linked gene is necessary for efficient assembly of class I antigen subunits.

467 citations

Journal ArticleDOI
TL;DR: It is proposed that the root cell cytoplasm of Cd-overaccumulating rice plants has more Cd available for loading into the xylem as a result of the lack of OsHMA3-mediated transportation of CD to the vacuoles, which results in Cd translocation to the shoots in higher concentrations.
Abstract: • The cadmium (Cd) over-accumulating rice (Oryza sativa) cv Cho-Ko-Koku was previously shown to have an enhanced rate of root-to-shoot Cd translocation. This trait is controlled by a single recessive allele located at qCdT7. • In this study, using positional cloning and transgenic strategies, heavy metal ATPase 3 (OsHMA3) was identified as the gene that controls root-to-shoot Cd translocation rates. The subcellular localization and Cd-transporting activity of the gene products were also investigated. • The allele of OsHMA3 that confers high root-to-shoot Cd translocation rates (OsHMA3mc) encodes a defective P(1B) -ATPase transporter. OsHMA3 fused to green fluorescent protein was localized to vacuolar membranes in plants and yeast. An OsHMA3 transgene complemented Cd sensitivity in a yeast mutant that lacks the ability to transport Cd into vacuoles. By contrast, OsHMA3mc did not complement the Cd sensitivity of this yeast mutant, indicating that the OsHMA3mc transport function was lost. • We propose that the root cell cytoplasm of Cd-overaccumulating rice plants has more Cd available for loading into the xylem as a result of the lack of OsHMA3-mediated transportation of Cd to the vacuoles. This defect results in Cd translocation to the shoots in higher concentrations. These data demonstrate the importance of vacuolar sequestration for Cd accumulation in rice.

467 citations

Journal ArticleDOI
TL;DR: A model of the role of FIS1 and FIS2 gene products in seed development is presented and it is indicated that fis1 is a null allele producing a truncated polypeptide lacking all the protein domains whereas the deduced protein from medea lacks only the SET domain.
Abstract: We have cloned two genes, FIS1 and FIS2, that control both fertilization independent seed development and postpollination embryo development in Arabidopsis. These genes confer female gametophytic phenotypes. FIS2 encodes a protein with a C2H2 zinc-finger motif and three putative nuclear localization signals, indicating that it is likely to be a transcription factor. FIS1 encodes a protein with homology to the Drosophila Polycomb group gene Enhancer-of-zeste and is identical to the recently described Arabidopsis gene MEDEA. FIS1 is a protein with a number of putative functional domains, including the SET domain present in Enhancer-of-zeste-related proteins. Comparison of the position of the lesions in the fis1 and medea mutant alleles indicates that fis1 is a null allele producing a truncated polypeptide lacking all the protein domains whereas the deduced protein from medea lacks only the SET domain. We present a model of the role of FIS1 and FIS2 gene products in seed development.

467 citations

Journal ArticleDOI
TL;DR: PHO1 defines a novel class of proteins involved in ion transport in plants, which shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway.
Abstract: The Arabidopsis mutant pho1 is deficient in the transfer of Pi from root epidermal and cortical cells to the xylem. The PHO1 gene was identified by a map-based cloning strategy. The N-terminal half of PHO1 is mainly hydrophilic, whereas the C-terminal half has six potential membrane-spanning domains. PHO1 shows no homology with any characterized solute transporter, including the family of H+-Pi cotransporters identified in plants and fungi. PHO1 shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway. PHO1 is expressed predominantly in the roots and is upregulated weakly under Pi stress. Studies with PHO1 promoter–β-glucuronidase constructs reveal predominant expression of the PHO1 promoter in the stelar cells of the root and the lower part of the hypocotyl. There also is β-glucuronidase staining of endodermal cells that are adjacent to the protoxylem vessels. The Arabidopsis genome contains 10 additional genes showing homology with PHO1. Thus, PHO1 defines a novel class of proteins involved in ion transport in plants.

466 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
93% related
Peptide sequence
84.1K papers, 4.3M citations
93% related
Transcription factor
82.8K papers, 5.4M citations
93% related
Gene expression
113.3K papers, 5.5M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20237,150
20226,747
20211,630
20201,916
20191,849