scispace - formally typeset
Search or ask a question
Topic

Mutant

About: Mutant is a research topic. Over the lifetime, 74520 publications have been published within this topic receiving 3477079 citations.


Papers
More filters
Journal ArticleDOI
15 May 1998-Science
TL;DR: The coi1 mutation defines an Arabidopsis gene required for response to jasmonates, which regulate defense against insects and pathogens, wound healing, and pollen fertility as mentioned in this paper.
Abstract: The coi1 mutation defines an Arabidopsis gene required for response to jasmonates, which regulate defense against insects and pathogens, wound healing, and pollen fertility. The wild-type allele, COI1, was mapped to a 90-kilobase genomic fragment and located by complementation of coi1-1 mutants. The predicted amino acid sequence of the COI1 protein contains 16 leucine-rich repeats and an F-box motif. It has similarity to the F-box proteins Arabidopsis TIR1, human Skp2, and yeast Grr1, which appear to function by targeting repressor proteins for removal by ubiquitination.

1,551 citations

Journal ArticleDOI
09 Sep 1994-Science
TL;DR: The developmental programs of lymphoid and myeloid lineages require a common genetic function likely acting at the level of a multipotential progenitor, and mice carrying a mutation in the PU.1 locus were generated by gene targeting.
Abstract: The transcription factor PU.1 is a hematopoietic-specific member of the ets family. Mice carrying a mutation in the PU.1 locus were generated by gene targeting. Homozygous mutant embryos died at a late gestational stage. Mutant embryos produced normal numbers of megakaryocytes and erythroid progenitors, but some showed an impairment of erythroblast maturation. An invariant consequence of the mutation was a multilineage defect in the generation of progenitors for B and T lymphocytes, monocytes, and granulocytes. Thus, the developmental programs of lymphoid and myeloid lineages require a common genetic function likely acting at the level of a multipotential progenitor.

1,546 citations

Journal ArticleDOI
01 Jul 1994-Science
TL;DR: This work has shown that with the use of the bacteriophage-derived, site-specific recombinase Cre in a transgenic approach, the same mutation can be selectively introduced into a particular cellular compartment-in this case, T cells.
Abstract: Deletion of the promoter and the first exon of the DNA polymerase beta gene (pol beta) in the mouse germ line results in a lethal phenotype. With the use of the bacteriophage-derived, site-specific recombinase Cre in a transgenic approach, the same mutation can be selectively introduced into a particular cellular compartment-in this case, T cells. The impact of the mutation on those cells can then be analyzed because the mutant animals are viable.

1,542 citations

Journal ArticleDOI
06 Dec 2012-Nature
TL;DR: GSK126, a potent, highly selective, S-adenosyl-methionine-competitive, small-molecule inhibitor of EZH2 methyltransferase activity, decreases global H3K27me3 levels and reactivates silenced PRC2 target genes and markedly inhibits the growth of EzH2 mutant DLBCL xenografts in mice are demonstrated.
Abstract: EZH2, the catalytic subunit of the polycomb repressive complex 2 (PRC2), is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). Overexpression of EZH2 is implicated in tumorigenesis, and mutations within its catalytic domain occur in lymphoma. Here, Caretha Creasy and colleagues describe a potent small-molecule inhibitor of EZH2 methyltransferase activity that decreases levels of methylated H3K27 and reactivates silenced PRC2 target genes. It also inhibits the proliferation of EZH2 mutant cell lines and the growth of EZH2 mutant xenografts in mice. Pharmacological inhibition of EZH2 activity may therefore be a viable strategy for treating EZH2 mutant lymphoma.

1,514 citations

Journal ArticleDOI
TL;DR: The results demonstrate how molecular evolution can solve a complex practical problem without needing to first identify which process is limiting and envision that the combination of DNA shuffling and high throughput screening will be a powerful tool for the optimization of many commercially important enzymes for which selections do not exist.
Abstract: Green fluorescent protein (GFP) has rapidly become a widely used reporter of gene regulation. However, for many organisms, particularly eukaryotes, a stronger whole cell fluorescence signal is desirable. We constructed a synthetic GFP gene with improved codon usage and performed recursive cycles of DNA shuffling followed by screening for the brightest E. coli colonies. A visual screen using UV light, rather than FACS selection, was used to avoid red-shifting the excitation maximum. After 3 cycles of DNA shuffling, a mutant was obtained with a whole cell fluorescence signal that was 45-fold greater than a standard, the commercially available Clontech plasmid pGFP. The expression level in E. coli was unaltered at about 75% of total protein. The emission and excitation maxima were also unchanged. Whereas in E. coli most of the wildtype GFP ends up in inclusion bodies, unable to activate its chromophore, most of the mutant protein is soluble and active. Three amino acid mutations appear to guide the mutant protein into the native folding pathway rather than toward aggregation. Expressed in Chinese Hamster Ovary (CHO) cells, this shuffled GFP mutant showed a 42-fold improvement over wildtype GFP sequence, and is easily detected with UV light in a wide range of assays. The results demonstrate how molecular evolution can solve a complex practical problem without needing to first identify which process is limiting. DNA shuffling can be combined with screening of a moderate number of mutants. We envision that the combination of DNA shuffling and high throughput screening will be a powerful tool for the optimization of many commercially important enzymes for which selections do not exist.

1,492 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
93% related
Peptide sequence
84.1K papers, 4.3M citations
93% related
Transcription factor
82.8K papers, 5.4M citations
93% related
Gene expression
113.3K papers, 5.5M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20237,150
20226,747
20211,630
20201,916
20191,849