scispace - formally typeset
Search or ask a question
Topic

Mutant

About: Mutant is a research topic. Over the lifetime, 74520 publications have been published within this topic receiving 3477079 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The expression pattern of GL2, as demonstrated by in situ hybridization, indicated that the gene is expressed in trichome progenitor cells and at stages associated with trichomes development, which suggests that GL2 may regulate events required for the directional cell expansion observed duringtrichome formation.
Abstract: The GLABRA2 gene (GL2) is one of several genes known to have a role in trichome development in Arabidopsis. Mutations at this locus result in abnormal trichome expansion. We have identified several gl2 mutants from a T-DNA-mutagenized population of plants. The T-DNA insert in one of the mutant lines cosegregated with the recessive gl2 phenotype and thus served as a molecular tag to isolate genomic DNA at the putative GL2 locus. RFLP analysis of the segregating population and subsequent molecular complementation experiments established that the GL2 gene had been cloned. The predicted polypeptide from one of the ORFs contained on this fragment showed significant identity to the homeo domain sequence. The construction of a full-length cDNA by RT-PCR confirmed the presence of a homeo box in the GL2 gene and showed that it is substantially different from other recently cloned homeo box genes in plants. The expression pattern of GL2, as demonstrated by in situ hybridization, indicated that the gene is expressed in trichome progenitor cells and at stages associated with trichome development. This suggests that GL2 may regulate events required for the directional cell expansion observed during trichome formation.

552 citations

Journal ArticleDOI
TL;DR: Contrary to the current belief that ABA-dependent and A BA-independent stress signaling pathways act in a parallel manner, the data reveal that these pathways cross-talk and converge to activate stress gene expression.
Abstract: To dissect genetically the complex network of osmotic and cold stress signaling, we constructed lines of Arabidopsis plants displaying bioluminescence in response to low temperature, drought, salinity, and the phytohormone abscisic acid (ABA). This was achieved by introducing into Arabidopsis plants a chimeric gene construct consisting of the firefly luciferase coding sequence (LUC) under the control of the stress-responsive RD29A promoter. LUC activity in the transgenic plants, as assessed by using in vivo luminescence imaging, faithfully reports the expression of the endogenous RD29A gene. A large number of cos (for constitutive expression of osmotically responsive genes), los (for low expression of osmotically responsive genes), and hos (for high expression of osmotically responsive genes) mutants were identified by using a high-throughput luminescence imaging system. The los and hos mutants were grouped into 14 classes according to defects in their responses to one or a combination of stress and ABA signals. Based on the classes of mutants recovered, we propose a model for stress signaling in higher plants. Contrary to the current belief that ABA-dependent and ABA-independent stress signaling pathways act in a parallel manner, our data reveal that these pathways cross-talk and converge to activate stress gene expression.

552 citations

Journal ArticleDOI
TL;DR: In this article, the authors used bacterial expression systems to produce fragments of human p53 and then isolated and characterized new monoclonal antibodies to p53, which are suitable for the measurement of p53 in ELISA, immunoblotting and immunoprecipitation analyses.

552 citations

Journal ArticleDOI
TL;DR: Exposure profiling reveals ABA modulation of many known guard cell ABA signaling components at the transcript level, and a highly ABA-induced protein phosphatase 2C transcript, AtP2C-HA, is identified in guard cells.
Abstract: Oligomer-based DNA Affymetrix GeneChips representing about one-third of Arabidopsis (Arabidopsis thaliana) genes were used to profile global gene expression in a single cell type, guard cells, identifying 1309 guard cell–expressed genes. Highly pure preparations of guard cells and mesophyll cells were isolated in the presence of transcription inhibitors that prevented induction of stress-inducible genes during cell isolation procedures. Guard cell expression profiles were compared with those of mesophyll cells, resulting in identification of 64 transcripts expressed preferentially in guard cells. Many large gene families and gene duplications are known to exist in the Arabidopsis genome, giving rise to redundancies that greatly hamper conventional genetic and functional genomic analyses. The presented genomic scale analysis identifies redundant expression of specific isoforms belonging to large gene families at the single cell level, which provides a powerful tool for functional genomic characterization of the many signaling pathways that function in guard cells. Reverse transcription–PCR of 29 genes confirmed the reliability of GeneChip results. Statistical analyses of promoter regions of abscisic acid (ABA)–regulated genes reveal an overrepresented ABA responsive motif, which is the known ABA response element. Interestingly, expression profiling reveals ABA modulation of many known guard cell ABA signaling components at the transcript level. We further identified a highly ABA-induced protein phosphatase 2C transcript, AtP2C-HA, in guard cells. A T-DNA disruption mutation in AtP2C-HA confers ABA-hypersensitive regulation of stomatal closing and seed germination. The presented data provide a basis for cell type–specific genomic scale analyses of gene function.

552 citations

Journal ArticleDOI
TL;DR: Findings show that the APG8/12 conjugation pathways have been conserved in plants and may have important roles in autophagic recycling, especially during situations that require substantial nitrogen and carbon mobilization.

550 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
93% related
Peptide sequence
84.1K papers, 4.3M citations
93% related
Transcription factor
82.8K papers, 5.4M citations
93% related
Gene expression
113.3K papers, 5.5M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20237,150
20226,747
20211,630
20201,916
20191,849