scispace - formally typeset
Search or ask a question

Showing papers on "Mutation (genetic algorithm) published in 2010"


Journal ArticleDOI
TL;DR: A new method and the corresponding software tool, PolyPhen-2, which is different from the early tool polyPhen1 in the set of predictive features, alignment pipeline, and the method of classification is presented and performance, as presented by its receiver operating characteristic curves, was consistently superior.
Abstract: To the Editor: Applications of rapidly advancing sequencing technologies exacerbate the need to interpret individual sequence variants. Sequencing of phenotyped clinical subjects will soon become a method of choice in studies of the genetic causes of Mendelian and complex diseases. New exon capture techniques will direct sequencing efforts towards the most informative and easily interpretable protein-coding fraction of the genome. Thus, the demand for computational predictions of the impact of protein sequence variants will continue to grow. Here we present a new method and the corresponding software tool, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), which is different from the early tool PolyPhen1 in the set of predictive features, alignment pipeline, and the method of classification (Fig. 1a). PolyPhen-2 uses eight sequence-based and three structure-based predictive features (Supplementary Table 1) which were selected automatically by an iterative greedy algorithm (Supplementary Methods). Majority of these features involve comparison of a property of the wild-type (ancestral, normal) allele and the corresponding property of the mutant (derived, disease-causing) allele, which together define an amino acid replacement. Most informative features characterize how well the two human alleles fit into the pattern of amino acid replacements within the multiple sequence alignment of homologous proteins, how distant the protein harboring the first deviation from the human wild-type allele is from the human protein, and whether the mutant allele originated at a hypermutable site2. The alignment pipeline selects the set of homologous sequences for the analysis using a clustering algorithm and then constructs and refines their multiple alignment (Supplementary Fig. 1). The functional significance of an allele replacement is predicted from its individual features (Supplementary Figs. 2–4) by Naive Bayes classifier (Supplementary Methods). Figure 1 PolyPhen-2 pipeline and prediction accuracy. (a) Overview of the algorithm. (b) Receiver operating characteristic (ROC) curves for predictions made by PolyPhen-2 using five-fold cross-validation on HumDiv (red) and HumVar3 (light green). UniRef100 (solid ... We used two pairs of datasets to train and test PolyPhen-2. We compiled the first pair, HumDiv, from all 3,155 damaging alleles with known effects on the molecular function causing human Mendelian diseases, present in the UniProt database, together with 6,321 differences between human proteins and their closely related mammalian homologs, assumed to be non-damaging (Supplementary Methods). The second pair, HumVar3, consists of all the 13,032 human disease-causing mutations from UniProt, together with 8,946 human nsSNPs without annotated involvement in disease, which were treated as non-damaging. We found that PolyPhen-2 performance, as presented by its receiver operating characteristic curves, was consistently superior compared to PolyPhen (Fig. 1b) and it also compared favorably with the three other popular prediction tools4–6 (Fig. 1c). For a false positive rate of 20%, PolyPhen-2 achieves the rate of true positive predictions of 92% and 73% on HumDiv and HumVar, respectively (Supplementary Table 2). One reason for a lower accuracy of predictions on HumVar is that nsSNPs assumed to be non-damaging in HumVar contain a sizable fraction of mildly deleterious alleles. In contrast, most of amino acid replacements assumed non-damaging in HumDiv must be close to selective neutrality. Because alleles that are even mildly but unconditionally deleterious cannot be fixed in the evolving lineage, no method based on comparative sequence analysis is ideal for discriminating between drastically and mildly deleterious mutations, which are assigned to the opposite categories in HumVar. Another reason is that HumDiv uses an extra criterion to avoid possible erroneous annotations of damaging mutations. For a mutation, PolyPhen-2 calculates Naive Bayes posterior probability that this mutation is damaging and reports estimates of false positive (the chance that the mutation is classified as damaging when it is in fact non-damaging) and true positive (the chance that the mutation is classified as damaging when it is indeed damaging) rates. A mutation is also appraised qualitatively, as benign, possibly damaging, or probably damaging (Supplementary Methods). The user can choose between HumDiv- and HumVar-trained PolyPhen-2. Diagnostics of Mendelian diseases requires distinguishing mutations with drastic effects from all the remaining human variation, including abundant mildly deleterious alleles. Thus, HumVar-trained PolyPhen-2 should be used for this task. In contrast, HumDiv-trained PolyPhen-2 should be used for evaluating rare alleles at loci potentially involved in complex phenotypes, dense mapping of regions identified by genome-wide association studies, and analysis of natural selection from sequence data, where even mildly deleterious alleles must be treated as damaging.

11,571 citations


Journal ArticleDOI
22 Jan 2010-Science
TL;DR: A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function.
Abstract: A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.

2,225 citations



Journal ArticleDOI
TL;DR: There appears to be a negative correlation between mutation rate and genome size among RNA viruses, and nucleotide substitutions are on average four times more common than insertions/deletions (indels) in retroviruses.
Abstract: Accurate estimates of virus mutation rates are important to understand the evolution of the viruses and to combat them. However, methods of estimation are varied and often complex. Here, we critically review over 40 original studies and establish criteria to facilitate comparative analyses. The mutation rates of 23 viruses are presented as substitutions per nucleotide per cell infection (s/n/c) and corrected for selection bias where necessary, using a new statistical method. The resulting rates range from 10 8 to10 6 s/n/c for DNA viruses and from 10 6 to 10 4 s/n/c for RNA viruses. Similar to what has been shown previously for DNA viruses, there appears to be a negative correlation between mutation rate and genome size among RNA viruses, but this result requires further experimental testing. Contrary to some suggestions, the mutation rate of retroviruses is not lower than that of other RNA viruses. We also show that nucleotide substitutions are on average four times more common than insertions/deletions (indels). Finally, we provide estimates of the mutation rate per nucleotide per strand copying, which tends to be lower than that per cell infection because some viruses undergo several rounds of copying per cell, particularly double-stranded DNA viruses. A regularly updated virus mutation rate data set will be available at www.uv.es/rsanjuan/virmut.

1,096 citations


Journal ArticleDOI
Michael Lynch1
TL;DR: A consideration of the long-term consequences of current human behavior for deleterious-mutation accumulation leads to the conclusion that a substantial reduction in human fitness can be expected over the next few centuries in industrialized societies unless novel means of genetic intervention are developed.
Abstract: Although mutation provides the fuel for phenotypic evolution, it also imposes a substantial burden on fitness through the production of predominantly deleterious alleles, a matter of concern from a human-health perspective. Here, recently established databases on de novo mutations for monogenic disorders are used to estimate the rate and molecular spectrum of spontaneously arising mutations and to derive a number of inferences with respect to eukaryotic genome evolution. Although the human per-generation mutation rate is exceptionally high, on a per-cell division basis, the human germline mutation rate is lower than that recorded for any other species. Comparison with data from other species demonstrates a universal mutational bias toward A/T composition, and leads to the hypothesis that genome-wide nucleotide composition generally evolves to the point at which the power of selection in favor of G/C is approximately balanced by the power of random genetic drift, such that variation in equilibrium genome-wide nucleotide composition is largely defined by variation in mutation biases. Quantification of the hazards associated with introns reveals that mutations at key splice-site residues are a major source of human mortality. Finally, a consideration of the long-term consequences of current human behavior for deleterious-mutation accumulation leads to the conclusion that a substantial reduction in human fitness can be expected over the next few centuries in industrialized societies unless novel means of genetic intervention are developed.

716 citations


Journal ArticleDOI
TL;DR: It became apparent that several of the five Parkinson genes were also contributing to the genetic etiology of other Lewy Body Diseases and Parkinson‐plus syndromes, indicating that mutation screening is recommendable in these patient groups.
Abstract: To date, molecular genetic analyses have identified over 500 distinct DNA variants in five disease genes associated with familial Parkinson disease; α-synuclein (SNCA), parkin (PARK2), PTEN-induced putative kinase 1 (PINK1), DJ-1 (PARK7), and Leucine-rich repeat kinase 2 (LRRK2). These genetic variants include ∼82% simple mutations and ∼18% copy number variations. Some mutation subtypes are likely underestimated because only few studies reported extensive mutation analyses of all five genes, by both exonic sequencing and dosage analyses. Here we present an update of all mutations published to date in the literature, systematically organized in a novel mutation database (http://www.molgen.ua.ac.be/PDmutDB). In addition, we address the biological relevance of putative pathogenic mutations. This review emphasizes the need for comprehensive genetic screening of Parkinson patients followed by an insightful study of the functional relevance of observed genetic variants. Moreover, while capturing existing data from the literature it became apparent that several of the five Parkinson genes were also contributing to the genetic etiology of other Lewy Body Diseases and Parkinson-plus syndromes, indicating that mutation screening is recommendable in these patient groups. Hum Mutat 31:763–780, 2010. © 2010 Wiley-Liss, Inc.

486 citations


Journal ArticleDOI
TL;DR: It is demonstrated that clonal pathogens that evolve under severely relaxed selection are uniquely suitable for studying mutational biases in bacteria and that variation in nucleotide content cannot stem entirely from variation inmutational biases and that natural selection and/or a natural selection-like process such as biased gene conversion strongly affect nucleotidecontent.
Abstract: Mutation is the engine that drives evolution and adaptation forward in that it generates the variation on which natural selection acts. Mutation is a random process that nevertheless occurs according to certain biases. Elucidating mutational biases and the way they vary across species and within genomes is crucial to understanding evolution and adaptation. Here we demonstrate that clonal pathogens that evolve under severely relaxed selection are uniquely suitable for studying mutational biases in bacteria. We estimate mutational patterns using sequence datasets from five such clonal pathogens belonging to four diverse bacterial clades that span most of the range of genomic nucleotide content. We demonstrate that across different types of sites and in all four clades mutation is consistently biased towards AT. This is true even in clades that have high genomic GC content. In all studied cases the mutational bias towards AT is primarily due to the high rate of C/G to T/A transitions. These results suggest that bacterial mutational biases are far less variable than previously thought. They further demonstrate that variation in nucleotide content cannot stem entirely from variation in mutational biases and that natural selection and/or a natural selection-like process such as biased gene conversion strongly affect nucleotide content.

423 citations


Journal ArticleDOI
01 Jun 2010-Genetics
TL;DR: The main aim here is to use whole-genome sequence data for the prediction of genetic values of individuals for complex traits and to explore the accuracy of such predictions, using a Bayesian nonlinear model.
Abstract: Whole-genome resequencing technology has improved rapidly during recent years and is expected to improve further such that the sequencing of an entire human genome sequence for $1000 is within reach. Our main aim here is to use whole-genome sequence data for the prediction of genetic values of individuals for complex traits and to explore the accuracy of such predictions. This is relevant for the fields of plant and animal breeding and, in human genetics, for the prediction of an individual's risk for complex diseases. Here, population history and genomic architectures were simulated under the Wright-Fisher population and infinite-sites mutation model, and prediction of genetic value was by the genomic selection approach, where a Bayesian nonlinear model was used to predict the effects of individual SNPs. The Bayesian model assumed a priori that only few SNPs are causative, i.e., have an effect different from zero. When using whole-genome sequence data, accuracies of prediction of genetic value were >40% increased relative to the use of dense approximately 30K SNP chips. At equal high density, the inclusion of the causative mutations yielded an extra increase of accuracy of 2.5-3.7%. Predictions of genetic value remained accurate even when the training and evaluation data were 10 generations apart. Best linear unbiased prediction (BLUP) of SNP effects does not take full advantage of the genome sequence data, and nonlinear predictions, such as the Bayesian method used here, are needed to achieve maximum accuracy. On the basis of theoretical work, the results could be extended to more realistic genome and population sizes.

354 citations


Journal ArticleDOI

348 citations


Journal ArticleDOI
TL;DR: It is shown that the strength of selected codon usage bias is highly correlated with bacterial growth rate, suggesting that selection has favoured translational efficiency.
Abstract: The frequencies of alternative synonymous codons vary both among species and among genes from the same genome. These patterns have been inferred to reflect the action of natural selection. Here we evaluate this in bacteria. While intragenomic variation in many species is consistent with selection favouring translationally optimal codons, much of the variation among species appears to be due to biased patterns of mutation. The strength of selection on codon usage can be estimated by two different approaches. First, the extent of bias in favour of translationally optimal codons in highly expressed genes, compared to that in genes where selection is weak, reveals the long-term effectiveness of selection. Here we show that the strength of selected codon usage bias is highly correlated with bacterial growth rate, suggesting that selection has favoured translational efficiency. Second, the pattern of bias towards optimal codons at polymorphic sites reveals the ongoing action of selection. Using this approach we obtained results that were completely consistent with the first method; importantly, the frequency spectra of optimal codons at polymorphic sites were similar to those predicted under an equilibrium model. Highly expressed genes in Escherichia coli appear to be under continuing strong selection, whereas selection is very weak in genes expressed at low levels.

301 citations


Journal ArticleDOI
TL;DR: Estimates of penetrance (cancer risk) vary considerably depending on the context in which they were derived and have been shown to vary within families with the same BRCA1/2 mutation, suggesting there is no exact risk estimate that can be applied to all individuals with a BRCa1/ 2 mutation.

Journal ArticleDOI
01 Nov 2010-Genetics
TL;DR: The results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals, and suggest an ad hoc method to counter this effect.
Abstract: The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation–drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright–Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration–drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating “spurious” bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species.

Journal ArticleDOI
TL;DR: ACVRL1 mutation carriers were characterized by a younger age at PAH diagnosis and had worse prognosis compared with other patients with PAH, suggesting more rapid disease progression.
Abstract: Rationale: Activin A receptor type II-like kinase-1 (ACVRL1, also known as ALK1) mutation is a cause of hereditary hemorrhagic telangiectasia (HHT) and/or heritable pulmonary arterial hypertension (PAH).Objectives: To describe the characteristics of patients with PAH carrying an ACVRL1 mutation.Methods: We reviewed clinical, functional, and hemodynamic characteristics of 32 patients with PAH carrying an ACVRL1 mutation, corresponding to 9 patients from the French PAH Network and 23 from literature analysis. These cases were compared with 370 patients from the French PAH Network (93 with a bone morphogenetic protein receptor type 2 [BMPR2] mutation and 277 considered as idiopathic cases without identified mutation). Distribution of mutations in the ACVRL1 gene in patients with PAH was compared with the HHT Mutation Database.Measurements and Main Results: At diagnosis, ACVRL1 mutation carriers were significantly younger (21.8 ± 16.7 yr) than BMPR2 mutation carriers and noncarriers (35.7 ± 14.9 and 47.6 ± 16...

Journal ArticleDOI
TL;DR: TP53 mutation testing is suggested for all families fulfilling the Chompret criteria and can be considered in the event of childhood sarcoma and breast cancer before 30 years.
Abstract: BACKGROUND Li-Fraumeni syndrome (LFS) is a rare autosomal dominant cancer predisposition syndrome. Most families fulfilling the classical diagnostic criteria harbour TP53 germline mutations. However, TP53 germline mutations may also occur in less obvious phenotypes. As a result, different criteria are in use to decide which patients qualify for TP53 mutation analysis, including the LFS, Li-Fraumeni-like (LFL) and Chompret criteria. We investigated which criteria for TP53 mutation analysis resulted in the highest mutation detection rate and sensitivity in Dutch families. We describe the tumour spectrum in TP53-positive families and calculated tumour type specific relative risks. METHOD A total of 180 Dutch families referred for TP53 mutation analysis were evaluated. Tumour phenotypes were verified by pathology reports or clinical records. RESULTS A TP53 germline mutation was identified in 24 families. When the Chompret criteria were used 22/24 mutations were detected (sensitivity 92%, mutation detection rate 21%). In LFS and LFL families 18/24 mutations were found (sensitivity 75%). The two mutations detected outside the 'Chompret group' were found in a child with rhabdomyosarcoma and a young woman with breast cancer. In the mutation carriers, in addition to the classical LFS tumour types, colon and pancreatic cancer were also found significantly more often than in the general population. CONCLUSION We suggest TP53 mutation testing for all families fulfilling the Chompret criteria. In addition, TP53 mutation testing can be considered in the event of childhood sarcoma and breast cancer before 30 years. In addition to the risk for established LFS tumour types, TP53-positive individuals may also have an elevated risk for pancreatic and colon cancer.

Journal ArticleDOI
TL;DR: Evidence is presented that a patient bearing the BRAf V600K mutation responded remarkably to PLX4032, suggesting that clinical trials should include all patients with activating BRAF V600E/K mutations.
Abstract: Activating mutations in BRAF kinase are common in melanomas. Clinical trials with PLX4032, the mutant-BRAF inhibitor, show promising preliminary results in patients selected for the presence of V600E mutation. However, activating V600K mutation is the other most common mutation, yet patients with this variant are currently excluded from the PLX4032 trials. Here we present evidence that a patient bearing the BRAF V600K mutation responded remarkably to PLX4032, suggesting that clinical trials should include all patients with activating BRAF V600E/K mutations.

Journal ArticleDOI
25 Feb 2010-Leukemia
TL;DR: Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia is found.
Abstract: Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia

Proceedings ArticleDOI
12 Jul 2010
TL;DR: The μtest prototype generates test suites that find significantly more seeded defects than the original manually written test suites, and is optimized toward finding defects modeled by mutation operators rather than covering code.
Abstract: To assess the quality of test suites, mutation analysis seeds artificial defects (mutations) into programs; a non-detected mutation indicates a weakness in the test suite. We present an automated approach to generate unit tests that detect these mutations for object-oriented classes. This has two advantages: First, the resulting test suite is optimized towards finding defects rather than covering code. Second, the state change caused by mutations induces oracles that precisely detect the mutants. Evaluated on two open source libraries, our muTest prototype generates test suites that find significantly more seeded defects than the original manually written test suites.

Journal ArticleDOI
TL;DR: Experimental evidence supports the hypothesis that DBA is primarily the result of defective ribosome synthesis, and bioinformatic tools show that gene conversion mechanism is not common in RP genes mutagenesis, notwithstanding the abundance of RP pseudogenes.
Abstract: Diamond-Blackfan Anemia (DBA) is characterized by a defect of erythroid progenitors and, clinically, by anemia and malformations. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Currently nine genes, all encoding ribosomal proteins (RP), have been found mutated in approximately 50% of patients. Experimental evidence supports the hypothesis that DBA is primarily the result of defective ribosome synthesis. By means of a large collaboration among six centers, we report here a mutation update that includes nine genes and 220 distinct mutations, 56 of which are new. The DBA Mutation Database now includes data from 355 patients. Of those where inheritance has been examined, 125 patients carry a de novo mutation and 72 an inherited mutation. Mutagenesis may be ascribed to slippage in 65.5% of indels, whereas CpG dinucleotides are involved in 23% of transitions. Using bioinformatic tools we show that gene conversion mechanism is not common in RP genes mutagenesis, notwithstanding the abundance of RP pseudogenes. Genotype-phenotype analysis reveals that malformations are more frequently associated with mutations in RPL5 and RPL11 than in the other genes. All currently reported DBA mutations together with their functional and clinical data are included in the DBA Mutation Database.

Journal ArticleDOI
TL;DR: The results indicated that the characteristics of ion beams for mutation induction are high mutation frequency and broad mutation spectrum and therefore, efficient induction of novel mutants.
Abstract: Recently, heavy ions or ion beams have been used to generate new mutants or varieties, especially in higher plants. It has been found that ion beams show high relative biological effectiveness (RBE) of growth inhibition, lethality, and so on, but the characteristics of ion beams on mutation have not been clearly elucidated. To understand the effect of ion beams on mutation induction, mutation rates were investigated using visible known Arabidopsis mutant phenotypes, indicating that mutation frequencies induced by carbon ions were 20-fold higher than by electrons. In chrysanthemum and carnation, flower-color and flower-form mutants, which are hardly produced by gamma rays or X rays, were induced by ion beams. Novel mutants and their responsible genes, such as UV-B resistant, serrated petals and sepals, anthocyaninless, etc. were induced by ion beams. These results indicated that the characteristics of ion beams for mutation induction are high mutation frequency and broad mutation spectrum and therefore, efficient induction of novel mutants. On the other hand, PCR and sequencing analyses showed that half of all mutants induced by ion beams possessed large DNA alterations, while the rest had point-like mutations. Both mutations induced by ion beams had a common feature that deletion of several bases were predominantly induced. It is plausible that ion beams induce a limited amount of large and irreparable DNA damage, resulting in production of a null mutation that shows a new mutant phenotype.

Journal ArticleDOI
TL;DR: The molecular classification on the basis of IDH1/2 mutation, TP53 mutation, and 1p/19q loss has power similar to histological classification and avoids the ambiguity inherent to the diagnosis of oligoastrocytoma.
Abstract: The current World Health Organization classification recognizes three histological types of grade II low-grade diffuse glioma (diffuse astrocytoma, oligoastrocytoma, and oligodendroglioma). However, the diagnostic criteria, in particular for oligoastrocytoma, are highly subjective. The aim of our study was to establish genetic profiles for diffuse gliomas and to estimate their predictive impact. In this study, we screened 360 World Health Organization grade II gliomas for mutations in the IDH1, IDH2, and TP53 genes and for 1p/19q loss and correlated these with clinical outcome. Most tumors (86%) were characterized genetically by TP53 mutation plus IDH1/2 mutation (32%), 1p/19q loss plus IDH1/2 mutation (37%), or IDH1/2 mutation only (17%). TP53 mutations only or 1p/19q loss only was rare (2 and 3%, respectively). The median survival of patients with TP53 mutation ± IDH1/2 mutation was significantly shorter than that of patients with 1p/19q loss ± IDH1/2 mutation (51.8 months vs. 58.7 months, respectively; P = 0.0037). Multivariate analysis with adjustment for age and treatment confirmed these results (P = 0.0087) and also revealed that TP53 mutation is a significant prognostic marker for shorter survival (P = 0.0005) and 1p/19q loss for longer survival (P = 0.0002), while IDH1/2 mutations are not prognostic (P = 0.8737). The molecular classification on the basis of IDH1/2 mutation, TP53 mutation, and 1p/19q loss has power similar to histological classification and avoids the ambiguity inherent to the diagnosis of oligoastrocytoma.

Journal ArticleDOI
TL;DR: This paper introduces a partial order on the set of silting objects and establishes the relationship with 'silting mutation' by generalizing the theory of Riedtmann-Schofield and Happel-Unger, and shows that iterated silting mutation act transitively on theSet ofsilting objects for local, hereditary or canonical algebras.
Abstract: In representation theory of algebras the notion of `mutation' often plays important roles, and two cases are well known, i.e. `cluster tilting mutation' and `exceptional mutation'. In this paper we focus on `tilting mutation', which has a disadvantage that it is often impossible, i.e. some of summands of a tilting object can not be replaced to get a new tilting object. The aim of this paper is to take away this disadvantage by introducing `silting mutation' for silting objects as a generalization of `tilting mutation'. We shall develope a basic theory of silting mutation. In particular, we introduce a partial order on the set of silting objects and establish the relationship with `silting mutation' by generalizing the theory of Riedtmann-Schofield and Happel-Unger. We show that iterated silting mutation act transitively on the set of silting objects for local, hereditary or canonical algebras. Finally we give a bijection between silting subcategories and certain t-structures.

Journal ArticleDOI
08 Apr 2010-Blood
TL;DR: It is concluded that IDH1 is associated with distinct clinical and biologic characteristics and seems to be very stable during disease evolution.

Journal ArticleDOI
TL;DR: Using a combination of complementary DNA (cDNA) and chromosome analysis in addition to conventional genomic DNA-based method, mutation detection was successfully accomplished in all cases, and the largest mutation database of Japanese dystrophinopathy was established.
Abstract: Recent developments in molecular therapies for Duchenne muscular dystrophy (DMD) demand accurate genetic diagnosis, because therapies are mutation specific. The KUCG (Kobe University Clinical Genetics) database for DMD and Becker muscular dystrophy is a hospital-based database comprising 442 cases. Using a combination of complementary DNA (cDNA) and chromosome analysis in addition to conventional genomic DNA-based method, mutation detection was successfully accomplished in all cases, and the largest mutation database of Japanese dystrophinopathy was established. Among 442 cases, deletions and duplications encompassing one or more exons were identified in 270 (61%) and 38 (9%) cases, respectively. Nucleotide changes leading to nonsense mutations or disrupting a splice site were identified in 69 (16%) or 24 (5%) cases, respectively. Small deletion/insertion mutations were identified in 34 (8%) cases. Remarkably, two retrotransposon insertion events were also identified. Dystrophin cDNA analysis successfully revealed novel transcripts with a pseudoexon created by a single-nucleotide change deep within an intron in four cases. X-chromosome abnormalities were identified in two cases. The reading frame rule was upheld for 93% of deletion and 66% of duplication mutation cases. For the application of molecular therapies, induction of exon skipping was deemed the first priority for dystrophinopathy treatment. At one Japanese referral center, the hospital-based mutation database of the dystrophin gene was for the first time established with the highest levels of quality and patient's number.

Journal ArticleDOI
TL;DR: The result suggests that the female predominance in the EGFR mutation rate is a reflection of a higher frequency of adenocarcinoma in females, and the gender difference in the mutation subtypes may provide a clue for the mechanism of the occurrence of the EG FR mutation.
Abstract: Mutation in the epidermal growth factor receptor (EGFR) is frequently seen in non-small cell lung cancers (NSCLCs), especially in Asian females with adenocarcinoma. The frequency of mutation and the factors associated requires to be elucidated by analyzing a large number of consecutive clinical samples. We summarized the result of the EGFR mutation analysis for 1,176 patients performed at the time of diagnosis or relapse. The PNA-LNA PCR clamp, a highly sensitive detection method for the EGFR mutation, was employed. For fresh cases a portion of samples isolated to establish the diagnosis of lung cancer was used. For cases with a relapsed disease archival tissue were tested. The variables associated with the EGFR mutation after removing the confound factors were investigated by the logistic analysis using the samples collected in our university (n = 308) where detailed information on patients were available. The frequency of the EGFR mutation and its subtypes were investigated using all samples (n = 1,176). The EGFR mutation was significantly associated with adenocarcinoma (p = 0.006) and light-smoking (p < 0.0001), but not gender. The deletions in exon 19 were more frequently associated with male gender while exon 21 deletions were with female gender (p = 0.0011). The overall frequency of the EGFR mutation was 31%. Our result suggests that the female predominance in the EGFR mutation rate is a reflection of a higher frequency of adenocarcinoma in females. The gender difference in the mutation subtypes may provide a clue for the mechanism of the occurrence of the EGFR mutation.

Book ChapterDOI
11 Sep 2010
TL;DR: This work reconsiders a classical problem, namely how the (1+1) evolutionary algorithm optimizes the LEADINGONES function, and proves that if a mutation probability of p is used and the problem size is n, then the optimization time is 1/2p2 ((1 - p)-n+1 - (1- p)).
Abstract: We reconsider a classical problem, namely how the (1+1) evolutionary algorithm optimizes the LEADINGONES function. We prove that if a mutation probability of p is used and the problem size is n, then the optimization time is1/2p2 ((1 - p)-n+1 - (1 - p)). For the standard value of p ≅ 1/n, this is approximately 0.86n2. As our bound shows, this mutation probability is not optimal: For p ≅ 1.59/n, the optimization time drops by more than 16% to approximately 0.77n2. Our method also allows to analyze mutation probabilities depending on the current fitness (as used in artificial immune systems). Again, we derive an exact expression. Analysing it, we find a fitness dependent mutation probability that yields an expected optimization time of approximately 0.68n2, another 12% improvement over the optimal mutation rate. In particular, this is the first example where an adaptive mutation rate provably speeds up the computation time. In a general context, these results suggest that the final word on mutation probabilities in evolutionary computation is not yet spoken.


Journal ArticleDOI
TL;DR: The rates of mutation, recombination, mean length of recombination tracts, and average diversity in Helicobacter pylori are estimated using Approximate Bayesian Computation to show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude.
Abstract: Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4×10−6 (serial isolates) to 4.5×10−6 (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5–17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude.

Journal ArticleDOI
TL;DR: The original BBO is extended and a real-coded BBO approach is presented, referred to as RCBBO, for the global optimization problems in the continuous domain, in order to improve the diversity of the population and enhance the exploration ability of RCB BO.

Journal ArticleDOI
TL;DR: In a Dutch consanguineous family with three affected siblings a homozygous 12.5 Mb region on chromosome 3 was targeted by array-based sequence capture and contained a variant with a high base pair conservation score, which was a leucine-to-arginine substitution in the DUF 590 domain of a 16K transmembrane protein, a putative calcium-activated chloride channel encoded by anoctamin 10.
Abstract: Autosomal-recessive cerebellar ataxias comprise a clinically and genetically heterogeneous group of neurodegenerative disorders. In contrast to their dominant counterparts, unraveling the molecular background of these ataxias has proven to be more complicated and the currently known mutations provide incomplete coverage for genotyping of patients. By combining SNP array-based linkage analysis and targeted resequencing of relevant sequences in the linkage interval with the use of next-generation sequencing technology, we identified a mutation in a gene and have shown its association with autosomal-recessive cerebellar ataxia. In a Dutch consanguineous family with three affected siblings a homozygous 12.5 Mb region on chromosome 3 was targeted by array-based sequence capture. Prioritization of all detected sequence variants led to four candidate genes, one of which contained a variant with a high base pair conservation score (phyloP score: 5.26). This variant was a leucine-to-arginine substitution in the DUF 590 domain of a 16K transmembrane protein, a putative calcium-activated chloride channel encoded by anoctamin 10 (ANO10). The analysis of ANO10 by Sanger sequencing revealed three additional mutations: a homozygous mutation (c.1150_1151del [p.Leu384fs]) in a Serbian family and a compound-heterozygous splice-site mutation (c.1476+1G>T) and a frameshift mutation (c.1604del [p.Leu535X]) in a French family. This illustrates the power of using initial homozygosity mapping with next-generation sequencing technology to identify genes involved in autosomal-recessive diseases. Moreover, identifying a putative calcium-dependent chloride channel involved in cerebellar ataxia adds another pathway to the list of pathophysiological mechanisms that may cause cerebellar ataxia.

Proceedings ArticleDOI
06 Apr 2010
TL;DR: This paper examines whether changes in coverage can be used to detect non-equivalent mutants: if a mutant changes the coverage of a run, it is more likely to be non-Equivalent.
Abstract: Mutation testing measures the adequacy of a test suite by seeding artificial defects (mutations) into a program. If a test suite fails to detect a mutation, it may also fail to detect real defects-and hence should be improved. However, there also are mutations which keep the program semantics unchanged and thus cannot be detected by any test suite. Such equivalent mutants must be weeded out manually, which is a tedious task. In this paper, we examine whether changes in coverage can be used to detect non-equivalent mutants: If a mutant changes the coverage of a run, it is more likely to be non-equivalent. Ina sample of 140 manually classified mutations of seven Java programs with 5,000to 100,000 lines of code, we found that: (a) the problem is serious and widespread-about 45% of all undetected mutants turned out to be equivalent;(b) manual classification takes time-about 15 minutes per mutation; (c)coverage is a simple, efficient, and effective means to identify equivalent mutants-with a classification precision of 75% and a recall of 56%; and (d)coverage as an equivalence detector is superior to the state of the art, in particular violations of dynamic invariants. Our detectors have been released as part of the open source Javalanche framework; the data set is publicly available for replication and extension of experiments.