scispace - formally typeset
Search or ask a question
Topic

Mycelium

About: Mycelium is a research topic. Over the lifetime, 8923 publications have been published within this topic receiving 170993 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Seven strains of edible mushrooms were studied with regard to mycelial growth on different growth media and culture conditions, and absence of light favoured rapid mycelium development in all the strains tested.
Abstract: Seven strains of edible mushrooms were studied with regard to mycelial growth on different growth media and culture conditions. Medium WDA (wheat/dextrose/agar) promoted higher rates of mycelial growth for all the mushrooms investigated. The majority of the strains presented higher growth rates at 30°C, but only Lentinus edodes kept maximum rates at low pH (pH 4.0), followed by Stropharia rugosoannulata and Pleurotus ostreatus (pH 5.0). Absence of light favoured rapid mycelium development in all the strains tested.

69 citations

Journal ArticleDOI
TL;DR: By using a three-compartment cultivation system, it is demonstrated that extraradical mycelium (ERM) could take up and transport Cr to mycorrhizal roots, but restrained Cr translocation from roots to shoots, and thus contributed to Cr immobilization in roots and relieved Cr phytotoxicity.

69 citations

Journal ArticleDOI
TL;DR: It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.
Abstract: Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate (E. purpurascens) and with the highest competition capacity (A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.

69 citations

Journal ArticleDOI
TL;DR: Comparing the chemical constituents of fruiting bodies produced on cotton straw and mycelial pellets revealed several similarities in total nitrogen, protein, glycogen, fatty acids, RNA, and ash content, but differences were observed in the contents of six amino acids.
Abstract: Pleurotus ostreatus `Florida9 was grown in submerged liquid culture. The biomass yield of the fungus, grown for 3 days in 2-liter fermentors, where the mycelial pellets measuring 5 mm in diameter were formed, was 11.7 g (dry weight)/liter. Comparing the chemical constituents of fruiting bodies produced on cotton straw and mycelial pellets revealed several similarities in total nitrogen, protein, glycogen, fatty acids, RNA, and ash content. Differences were observed in the contents of six amino acids. Although the total fatty acid content was similar, there were more saturated fatty acids in the mycelium. Cell wall composition, typical for basidiomycetes, was observed in both mycelium and fruiting bodies, with laminarin as the main polymer. Images

69 citations

Journal ArticleDOI
01 May 2006-Planta
TL;DR: Investigation of in vitro antifungal activity of mTaMDC1 showed strong inhibition on the mycelium growth of the snow mold fungus Microdochium nivale, which is comparable to those reported for other phytocystatins.
Abstract: A novel cold-induced cystatin cDNA clone (TaMDC1) was isolated from cold acclimated winter wheat crown tissue by using a macroarray-based differential screening method. The deduced amino acid sequence consisted of a putative N-terminal secretory signal peptide of 37 amino acids and a mature protein (mTaMDC1) with a molecular mass of 23 kDa. The mTaMDC1 had a highly conserved N-terminal cystatin domain and a long C-terminal extension containing a second region, which exhibited partial similarity to the cystatin domain. The recombinant mTaMDC1 was purified from Escherichia coli and its cysteine proteinase inhibitory activity against papain was analyzed. The calculated Ki value of 5.8×10−7 M is comparable to those reported for other phytocystatins. Northern and western blot analyses showed elevated expression of TaMDC1 mRNA and protein during cold acclimation of wheat. In addition to cold, accumulation of the TaMDC1 message was induced by other abiotic stresses including drought, salt and ABA treatment. Investigation of in vitro antifungal activity of mTaMDC1 showed strong inhibition on the mycelium growth of the snow mold fungus Microdochium nivale. Hyphae growth was totally inhibited in the presence of 50 μg/ml mTaMDC1 and morphological changes such as swelling, fragmentation and sporulation of the fungus were observed. The mechanisms of the in vitro antifungal effects and the possible involvement of TaMDC1 in cold induced snow mold resistance of winter wheat are discussed.

69 citations


Network Information
Related Topics (5)
Fusarium oxysporum
11.4K papers, 225K citations
92% related
Germination
51.9K papers, 877.9K citations
85% related
Cellulase
16.1K papers, 479.5K citations
85% related
Bacillus subtilis
19.6K papers, 539.4K citations
84% related
Rhizosphere
21.9K papers, 756.3K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
2023951
20221,628
2021187
2020287
2019295