scispace - formally typeset
Search or ask a question
Topic

Mycelium

About: Mycelium is a research topic. Over the lifetime, 8923 publications have been published within this topic receiving 170993 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Environmental control plots adjusted to late season drought and elevated soil temperatures where inoculated at peanut planting with low and high levels of conidia, sclerotia, and mycelium from a brown conidial mutant ofAspergillus parasiticus, positively correlated with the incidence of seed infection in undamaged pods.
Abstract: Environmental control plots adjusted to late season drought and elevated soil temperatures where inoculated at peanut planting with low and high levels of conidia, sclerotia, and mycelium from a brown conidial mutant ofAspergillus parasiticus. Percentage infection of peanut seeds from undamaged pods was greatest for the subplot containing the high sclerotial inoculum (15/cm2 soil surface). Sclerotia did not germinate sporogenically and may have invaded seeds through mycelium. In contrast, the mycelial inoculum (colonized peanut seed particles) released large numbers of conidia into soil. Soil conidial populations of brownA. parasiticus from treatments with conidia and mycelium were positively correlated with the incidence of seed infection in undamaged pods. The ratio ofA. flavus to wild-typeA. parasiticus in soil shifted from 7:3 to 1:1 in the uninoculated subplot after instigation of drought, whereas in all subplots treated with brownA. parasiticus, the ratio of the two species became approximately 8:2. Despite high levels of brownA. parasiticus populations in soil, nativeA. flavus often dominated peanut seeds, suggesting that it is a more aggressive species. Sclerotia of wild-typeA. parasiticus formed infrequently on preharvest peanut seeds from insect-damaged pods.

64 citations

Journal ArticleDOI
TL;DR: The percentages of enzyme-forming compounds, such as amino acids, nucleotides, RNA, and protein, were highest in the lag phase, whereas storage compounds such as carbohydrates increased to a maximum near the end of the log phase.
Abstract: Gottlieb, David (University of Illinois, Urbana), and James L. Van Etten. Biochemical changes during the growth of fungi. I. Nitrogen compounds and carbohydrate changes in Penicillium atrovenetum. J. Bacteriol. 88:114–121. 1964.—Changes in the biochemical constituents of cells were studied during the growth and development of Penicillium atrovenetum. Growth of the fungus, as measured by the dry weight, could be divided into four phases: lag, log, stationary, and death. The percentages of total nitrogen, cold trichloroacetic acid-soluble nitrogen, ribonucleic acid (RNA), and protein increased to a maximum during the lag phase, and subsequently decreased as the fungus aged. The percentage of deoxyribonucleic acid (DNA) was always slightly higher in the spores than in the mycelium. The DNA in the mycelium decreased in the lag phase, and then increased slightly to a plateau for the duration of the log phase, followed by a decrease to a constant percentage during the stationary and death phases. Carbohydrates were present in higher concentration in the mycelium than in the spores. The percentage of carbohydrates in the mycelium increased continually until it reached a maximum late in the log phase, and then decreased as the fungus entered the death phase. The results reported for this fungus are, in general, in agreement with those reported for other microorganisms. Namely, the percentages of enzyme-forming compounds, such as amino acids, nucleotides, RNA, and protein, were highest in the lag phase, whereas storage compounds such as carbohydrates increased to a maximum near the end of the log phase. The definition of log phase in fungi depends on the criteria that are used. If, instead of using the linear increase in dry weight to delimit this growth period, one uses the end of net protein, RNA, and DNA synthesis, a more realistic concept of growth emerges.

64 citations

Journal ArticleDOI
TL;DR: A number of the genes that were differentially expressed in trap cells are also known to be regulated during the development of infection structures in plant-pathogenic fungi.
Abstract: Nematode-trapping fungi enter the parasitic stage by developing specific morphological structures called traps. The global patterns of gene expression in traps and mycelium of the fungus Monacrosporium haptotylum were compared. The trap of this fungus is a unicellular spherical structure called the knob, which develops on the apex of a hyphal branch. RNA was isolated from knobs and mycelium and hybridized to a cDNA array containing probes of 2822 EST clones of M. haptotylum. Despite the fact that the knobs and mycelium were grown in the same medium, there were substantial differences in the patterns of genes expressed in the two cell types. In total, 23·3 % (657 of 2822) of the putative genes were differentially expressed in knobs versus mycelium. Several of these genes displayed sequence similarities to genes known to be involved in regulating morphogenesis and cell polarity in fungi. Among them were several putative homologues for small GTPases, such as rho1, rac1 and ras1, and a rho GDP dissociation inhibitor (rdi1). Several homologues to genes involved in stress response, protein synthesis and protein degradation, transcription, and carbon metabolism were also differentially expressed. In the last category, a glycogen phosphorylase (gph1) gene homologue, one of the most upregulated genes in the knobs as compared to mycelium, was characterized. A number of the genes that were differentially expressed in trap cells are also known to be regulated during the development of infection structures in plant-pathogenic fungi. Among them, a gas1 (mas3) gene homologue (designated gks1), which is specifically expressed in appressoria of the rice blast fungus, was characterized.

64 citations

Journal ArticleDOI
TL;DR: In continuing the authors' investigation on the bioactive constituents of mycelium of Antrodia camphorata, 4-acetyl-antroquinonol B, 2,3-(methylenedioxy)-6-methylbenzene-1,4-diol and 2,4 -dimethoxy-6- methylbenzenes- 1,3- diol along with antrodin D were isolated and identified on the basis of their spectroscopic analysis.
Abstract: In continuing our investigation on the bioactive constituents of mycelium of Antrodia camphorata, antroquinonol B (1), 4-acetyl-antroquinonol B (2), 2,3-(methylenedioxy)-6-methylbenzene-1,4-diol (3) and 2,4-dimethoxy-6-methylbenzene-1,3-di- " Antrodia camphorata l " Polyporaceae l " mycelium

64 citations

Journal ArticleDOI
TL;DR: All three methods used to investigate the effects of a number of commercial herbicides on the growth of certain soil fungi have shown consistent differences between fungi in their ability to tolerate paraquat.
Abstract: Summary Three methods have been used to investigate the effects of a number of commercial herbicides on the growth of certain soil fungi: measurements of hyphal extension across agar plates; measurements of hyphal extension along sterilized plant material; and manometric techniques. Three points, in particular, emerged from these studies. First, that there was no stimulation of fungal growth. Herbicide interference in growth included suppression of spore germination, inhibition of the rate of linear extension of the mycelia, and abnormalities in growth habit and in patterns of spore production. Secondly, that some herbicides (e.g. linuron and paraquat) were more fungitoxic than others (e.g. MCPA and simazine) to a range of organisms. Thirdly, that there were differences between fungi in their sensitivity to individual herbicides. All three methods have shown consistent differences between fungi in their ability to tolerate paraquat. Trichoderma viride, in particular, has been found to be sensitive to paraquat. The inhibitory effects were observed at concentrations well within the range likely to be experienced in the field.

64 citations


Network Information
Related Topics (5)
Fusarium oxysporum
11.4K papers, 225K citations
92% related
Germination
51.9K papers, 877.9K citations
85% related
Cellulase
16.1K papers, 479.5K citations
85% related
Bacillus subtilis
19.6K papers, 539.4K citations
84% related
Rhizosphere
21.9K papers, 756.3K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
2023951
20221,628
2021187
2020287
2019295