scispace - formally typeset
Search or ask a question
Topic

Mycelium

About: Mycelium is a research topic. Over the lifetime, 8923 publications have been published within this topic receiving 170993 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Generally, Tween 80 was more suitable for strengthening mycoremediation by P. eryngii than saponin, and could be a promising alternative for the remediation of heavy metals and PAHs co-contaminated sites by mushrooms.
Abstract: Bioremediation of areas co-contaminated with metals and polycyclic aromatic hydrocarbons (PAHs) by mushrooms has attracted considerable attention in recent years. In this study, Pleurotus eryngii was introduced for the removal of Mn and phenanthrene (Phe) from potato liquid medium (PDL) simultaneously. Effects of Tween 80 and saponin on P. eryngii growth together with Mn uptake as well as Phe removal were investigated. Although pollutants had a negative effect on mycelial morphology and growth, P. eryngii could still tolerate and remove Mn and Phe. Tween 80 increased removal of Mn and Phe through increase of P. eryngii growth, Phe solubility, pollutants bioavailability, and specific surface area of mycelium pellets, moreover, the activities of manganese peroxidase (MnP) and laccase, which played an important role on PAHs biodegradation. The maximal removal of Mn and Phe was achieved (92.17 and 93.85 % after 15 days incubation, respectively) with 0.6 g L(-1) Tween 80. Treatments with saponin markedly inhibited P. eryngii growth (50.17-66.32 % lower relative to control) due to its fungistatic activity. Nevertheless, saponin could slightly enhance Phe removal through increasing solubility of Phe, and Phe removal rate varied from 80.53 to 87.06 % in saponin treatments. Joint stress of Mn and Phe induced a strong antioxidative response, and superoxide dismutase (SOD) activity decreased in surfactants-treated mycelium compared with control. Generally, Tween 80 was more suitable for strengthening mycoremediation by P. eryngii than saponin, and could be a promising alternative for the remediation of heavy metals and PAHs co-contaminated sites by mushrooms.

49 citations

Journal ArticleDOI
TL;DR: Quantification of this phenomenon showed that bacterial dispersal occurs preferentially in upper soil horizons, highlighting the importance of fungus-drivenacterial dispersal to understand the functional role of oxalotrophic bacteria and fungi in soils.
Abstract: A technique based on an inverted Petri dish system was developed for the growth and isolation of soil oxalotrophic bacteria able to disperse on fungal mycelia. The method is related to the 'fungal highways' dispersion theory in which mycelial fungal networks allow active movement of bacteria in soil. Quantification of this phenomenon showed that bacterial dispersal occurs preferentially in upper soil horizons. Eight bacteria and one fungal strain were isolated by this method. The oxalotrophic activity of the isolated bacteria was confirmed through calcium oxalate dissolution in solid selective medium. After separation of the bacteria-fungus couple, partial sequencing of the 16S and the ITS1 and ITS2 sequences of the ribosomal RNA genes were used for the identification of bacteria and the associated fungus. The isolated oxalotrophic bacteria included strains related to Stenotrophomonas, Achromobacter, Lysobacter, Pseudomonas, Agrobacterium, Cohnella, and Variovorax. The recovered fungus corresponded to Trichoderma sp. A test carried out to verify bacterial transport in an unsaturated medium showed that all the isolated bacteria were able to migrate on Trichoderma hyphae or glass fibers to re-colonize an oxalate-rich medium. The results highlight the importance of fungus-driven bacterial dispersal to understand the functional role of oxalotrophic bacteria and fungi in soils.

49 citations

Journal ArticleDOI
TL;DR: Mechanisms of action and effectiveness of the antifungal yeast Cryptococcus laurentii, strain L5D, were examined against the causal agent of anthracnose Colletotrichum gloeosporioides in mango, showing high antagonistic potential in vivo and competition for nutrients, specifically for sucrose.

49 citations

Journal ArticleDOI
TL;DR: Hyphae of the arbuscular mycorrhizal fungus may absorb NH4+ preferentially over NO3− but that export of N from the hyphae to the root and shoot may be greater following No3− uptake, and the need forNH4+ to be assimilated into organically bound N prior to transport into the plant is discussed.
Abstract: Labeled nitrogen ((15)N) was applied to a soil-based substrate in order to study the uptake of N by Glomus intraradices extraradical mycelium (ERM) from different mineral N (NO(3)(-) vs. NH(4)(+)) sources and the subsequent transfer to cowpea plants. Fungal compartments (FCs) were placed within the plant growth substrate to simulate soil patches containing root-inaccessible, but mycorrhiza-accessible, N. The fungus was able to take up both N-forms, NO(3)(-) and NH(4)(+). However, the amount of N transferred from the FC to the plant was higher when NO(3)(-) was applied to the FC. In contrast, analysis of ERM harvested from the FC showed a higher (15)N enrichment when the FC was supplied with (15)NH(4)(+) compared with (15)NO(3)(-). The (15)N shoot/root ratio of plants supplied with (15)NO(3)(-) was much higher than that of plants supplied with (15)NH(4)(+), indicative of a faster transfer of (15)NO(3)(-) from the root to the shoot and a higher accumulation of (15)NH (4)(+) in the root and/or intraradical mycelium. It is concluded that hyphae of the arbuscular mycorrhizal fungus may absorb NH(4)(+) preferentially over NO(3)(-) but that export of N from the hyphae to the root and shoot may be greater following NO(3)(-) uptake. The need for NH(4)(+) to be assimilated into organically bound N prior to transport into the plant is discussed.

49 citations


Network Information
Related Topics (5)
Fusarium oxysporum
11.4K papers, 225K citations
92% related
Germination
51.9K papers, 877.9K citations
85% related
Cellulase
16.1K papers, 479.5K citations
85% related
Bacillus subtilis
19.6K papers, 539.4K citations
84% related
Rhizosphere
21.9K papers, 756.3K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
2023951
20221,628
2021187
2020287
2019295