Topic
Mycobacterium lepromatosis
About: Mycobacterium lepromatosis is a research topic. Over the lifetime, 87 publications have been published within this topic receiving 3729 citations.
Papers
More filters
TL;DR: Comparing the 3.27-megabase genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis provides clear explanations for these properties and reveals an extreme case of reductive evolution.
Abstract: Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae, a close relative of the tubercle bacillus. Mycobacterium leprae has the longest doubling time of all known bacteria and has thwarted every effort at culture in the laboratory. Comparing the 3.27-megabase (Mb) genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes but pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative and most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits.
1,620 citations
Pasteur Institute1, National Institutes of Health2, University College London3, University of Manchester4, English Heritage5, University of London6, Tehran University of Medical Sciences7, Centers for Disease Control and Prevention8, University of Southern California9, Universidade Federal de Goiás10, International Centre for Diarrhoeal Disease Research, Bangladesh11, Kathmandu12, Colorado State University13, University of Lausanne14, École Polytechnique Fédérale de Lausanne15
TL;DR: Sixteen interrelated SNP subtypes were defined by genotyping both extant and extinct strains of M. leprae from around the world and showed a strong geographical association that reflects the migration patterns of early humans and trade routes, with the Silk Road linking Europe to China having contributed to the spread of leprosy.
Abstract: Reductive evolution and massive pseudogene formation have shaped the 3.31-Mb genome of Mycobacterium leprae, an unculturable obligate pathogen that causes leprosy in humans. The complete genome sequence of M. leprae strain Br4923 from Brazil was obtained by conventional methods (6x coverage), and Illumina resequencing technology was used to obtain the sequences of strains Thai53 (38x coverage) and NHDP63 (46x coverage) from Thailand and the United States, respectively. Whole-genome comparisons with the previously sequenced TN strain from India revealed that the four strains share 99.995% sequence identity and differ only in 215 polymorphic sites, mainly SNPs, and by 5 pseudogenes. Sixteen interrelated SNP subtypes were defined by genotyping both extant and extinct strains of M. leprae from around the world. The 16 SNP subtypes showed a strong geographical association that reflects the migration patterns of early humans and trade routes, with the Silk Road linking Europe to China having contributed to the spread of leprosy.
349 citations
TL;DR: The origins of leprosy bacilli are probed by using a genomic capture-based approach on DNA obtained from skeletal remains from the 10th to 14th centuries, suggesting a link between the middle-eastern and medieval European strains, and remarkable genomic conservation during the past 1000 years.
Abstract: Leprosy was endemic in Europe until the Middle Ages. Using DNA array capture, we have obtained genome sequences of Mycobacterium leprae from skeletons of five medieval leprosy cases from the United Kingdom, Sweden, and Denmark. In one case, the DNA was so well preserved that full de novo assembly of the ancient bacterial genome could be achieved through shotgun sequencing alone. The ancient M. leprae sequences were compared with those of 11 modern strains, representing diverse genotypes and geographic origins. The comparisons revealed remarkable genomic conservation during the past 1000 years, a European origin for leprosy in the Americas, and the presence of an M. leprae genotype in medieval Europe now commonly associated with the Middle East. The exceptional preservation of M. leprae biomarkers, both DNA and mycolic acids, in ancient skeletons has major implications for palaeomicrobiology and human pathogen evolution.
297 citations
TL;DR: Wild armadillos and many patients with leprosy in the southern United States are infected with the same strain of M. leprae, andLeprosy may be a zoonosis in the region.
Abstract: Background In the southern region of the United States, such as in Louisiana and Texas, there are autochthonous cases of leprosy among native-born Americans with no history of foreign exposure. In the same region, as well as in Mexico, wild armadillos are infected with Mycobacterium leprae. Methods Whole-genome resequencing of M. leprae from one wild armadillo and three U.S. patients with leprosy revealed that the infective strains were essentially identical. Comparative genomic analysis of these strains and M. leprae strains from Asia and Brazil identified 51 single-nucleotide polymorphisms and an 11-bp insertion–deletion. We genotyped these polymorphic sites, in combination with 10 variable-number tandem repeats, in M. leprae strains obtained from 33 wild armadillos from five southern states, 50 U.S. outpatients seen at a clinic in Louisiana, and 64 Venezuelan patients, as well as in four foreign reference strains. Results The M. leprae genotype of patients with foreign exposure generally reflected thei...
267 citations
TL;DR: A new Mycobacterium species is discovered from 2 patients who died of diffuse lepromatous leprosy (DLL) and it is proposed that this species may account for some of the clinical and geographic variability ofLeprosy.
Abstract: Mycobacterium leprae causes leprosy. M leprae strains collected worldwide have been genetically clonal, which poorly explains the varying severity and clinical features of the disease. We discovered a new Mycobacterium species from 2 patients who died of diffuse lepromatous leprosy (DLL). The Mycobacterium was purified from heavily infected, freshly frozen autopsy liver tissue followed by DNA extraction in 1 case. Paraffin-embedded skin tissue was used for DNA extraction in another case. Six genes of the organism were amplified by polymerase chain reaction, sequenced on cloning or from amplicons, and analyzed. Significant genetic differences with M leprae were found, including a 2.1% divergence of the 16S ribosomal RNA (rRNA) gene, a highly conserved marker of bacterial evolution, and 6% to 14% mismatches among 5 less conserved genes. Phylogenetic analyses of the genes of 16S rRNA, rpoB, and hsp65 indicated that the 2 most related organisms evolved from a common ancestor that had branched from other mycobacteria. These results and the unique clinicopathologic features of DLL led us to propose Mycobacterium lepromatosis sp nov. This species may account for some of the clinical and geographic variability of leprosy. This finding may have implications for the research and diagnosis of leprosy.
221 citations