scispace - formally typeset
Search or ask a question
Topic

Myosin

About: Myosin is a research topic. Over the lifetime, 22461 publications have been published within this topic receiving 1038034 citations. The topic is also known as: myosins.


Papers
More filters
Journal ArticleDOI
TL;DR: Actin purified by a new, simple, and rapid purification procedure activated the ATPase activity of both heavy meromyosin and Subfragment 1 of heavy mercyosin, and this activation was not inhibited by the removal of Ca2+.

4,306 citations

Journal ArticleDOI
30 Oct 1997-Nature
TL;DR: Pyridine derivative Y-27632 consistently suppresses Rho-induced, p160ROCK-mediated formation of stress fibres in cultured cells and dramatically corrects hypertension in several hypertensive rat models, suggesting that compounds that inhibit this process might be useful therapeutically.
Abstract: Abnormal smooth-muscle contractility may be a major cause of disease states such as hypertension, and a smooth-muscle relaxant that modulates this process would be useful therapeutically. Smooth-muscle contraction is regulated by the cytosolic Ca2+ concentration and by the Ca2+ sensitivity of myofilaments: the former activates myosin light-chain kinase and the latter is achieved partly by inhibition of myosin phosphatase. The small GTPase Rho and its target, Rho-associated kinase, participate in this latter mechanism in vitro, but their participation has not been demonstrated in intact muscles. Here we show that a pyridine derivative, Y-27632, selectively inhibits smooth-muscle contraction by inhibiting Ca2+ sensitization. We identified the Y-27632 target as a Rho-associated protein kinase, p160ROCK. Y-27632 consistently suppresses Rho-induced, p160ROCK-mediated formation of stress fibres in cultured cells and dramatically corrects hypertension in several hypertensive rat models. Our findings indicate that p160ROCK-mediated Ca2+ sensitization is involved in the pathophysiology of hypertension and suggest that compounds that inhibit this process might be useful therapeutically.

2,900 citations

Journal ArticleDOI
12 Jul 1996-Science
TL;DR: Rho appears to inhibit myosin phosphatase through the action of Rho-kinase, which is activated by GTP·RhoA, phosphorylation of MBS and MLC in NIH 3T3 cells.
Abstract: The small guanosine triphosphatase Rho is implicated in myosin light chain (MLC) phosphorylation, which results in contraction of smooth muscle and interaction of actin and myosin in nonmuscle cells. The guanosine triphosphate (GTP)-bound, active form of RhoA (GTP.RhoA) specifically interacted with the myosin-binding subunit (MBS) of myosin phosphatase, which regulates the extent of phosphorylation of MLC. Rho-associated kinase (Rho-kinase), which is activated by GTP.RhoA, phosphorylated MBS and consequently inactivated myosin phosphatase. Overexpression of RhoA or activated RhoA in NIH 3T3 cells increased phosphorylation of MBS and MLC. Thus, Rho appears to inhibit myosin phosphatase through the action of Rho-kinase.

2,899 citations

Journal ArticleDOI
TL;DR: The purpose of the present communication is to point out some of the problems involved in the classification of fibers and to add new information of value in the analysis of human biopsy material.
Abstract: STUDIES on normal and pathological striated muscle are increasingly clouded by inconsistencies in the definition of fiber types and lack of correlation between different systems of nomenclature. The purpose of the present communication is to point out some of the problems involved in the classification of fibers and to add new information of value in the analysis of human biopsy material. The histochemical reaction for myosin adenosine triphosphatase (ATPase) and the pH lability of this reaction is used to characterize the various types of fibers. Material and Methods Muscle was obtained by biopsy in man, rat, and rabbit. Gastrocnemius and soleus were investigated in the animals. The human biopsies were taken from the biceps. The methods used for histochemical analysis have been given elsewhere. 1 In summary, unfixed frozen material was sectioned at 10μ thickness in the cryostat and the following histochemical reactions were carried out: (1) reduced diphosphopyridine

2,132 citations

Journal ArticleDOI
TL;DR: Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors.
Abstract: Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.

2,107 citations


Network Information
Related Topics (5)
Mitochondrion
51.5K papers, 3M citations
87% related
Phosphorylation
69.3K papers, 3.8M citations
86% related
Protein kinase A
68.4K papers, 3.9M citations
85% related
Protein structure
42.3K papers, 3M citations
84% related
Signal transduction
122.6K papers, 8.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023541
2022837
2021410
2020473
2019460
2018450