scispace - formally typeset
Search or ask a question
Topic

NADPH oxidase

About: NADPH oxidase is a research topic. Over the lifetime, 10475 publications have been published within this topic receiving 621122 citations. The topic is also known as: GO:0043020.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Abstract: For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phag...

5,873 citations

Journal ArticleDOI
TL;DR: It is suggested that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.
Abstract: Obesity is a principal causative factor in the development of metabolic syndrome. Here we report that increased oxidative stress in accumulated fat is an important pathogenic mechanism of obesity-associated metabolic syndrome. Fat accumulation correlated with systemic oxidative stress in humans and mice. Production of ROS increased selectively in adipose tissue of obese mice, accompanied by augmented expression of NADPH oxidase and decreased expression of antioxidative enzymes. In cultured adipocytes, elevated levels of fatty acids increased oxidative stress via NADPH oxidase activation, and oxidative stress caused dysregulated production of adipocytokines (fat-derived hormones), including adiponectin, plasminogen activator inhibitor-1, IL-6, and monocyte chemotactic protein-1. Finally, in obese mice, treatment with NADPH oxidase inhibitor reduced ROS production in adipose tissue, attenuated the dysregulation of adipocytokines, and improved diabetes, hyperlipidemia, and hepatic steatosis. Collectively, our results suggest that increased oxidative stress in accumulated fat is an early instigator of metabolic syndrome and that the redox state in adipose tissue is a potentially useful therapeutic target for obesity-associated metabolic syndrome.

4,752 citations

Journal ArticleDOI
TL;DR: Accumulating evidence suggests that oxidant stress alters many functions of the endothelium, including modulation of vasomotor tone, and as the role of these various enzyme sources of ROS become clear, it will perhaps be possible to use more specific therapies to prevent their production and ultimately correct endothelial dysfunction.
Abstract: Accumulating evidence suggests that oxidant stress alters many functions of the endothelium, including modulation of vasomotor tone. Inactivation of nitric oxide (NO(.)) by superoxide and other reactive oxygen species (ROS) seems to occur in conditions such as hypertension, hypercholesterolemia, diabetes, and cigarette smoking. Loss of NO(.) associated with these traditional risk factors may in part explain why they predispose to atherosclerosis. Among many enzymatic systems that are capable of producing ROS, xanthine oxidase, NADH/NADPH oxidase, and uncoupled endothelial nitric oxide synthase have been extensively studied in vascular cells. As the role of these various enzyme sources of ROS become clear, it will perhaps be possible to use more specific therapies to prevent their production and ultimately correct endothelial dysfunction.

3,756 citations

Journal ArticleDOI
TL;DR: Factors which possibly affect the effectiveness of antioxidant protection under oxygen deprivation as well as under other environmental stresses are presented.

3,562 citations

Journal ArticleDOI
01 Jun 1997
TL;DR: Emerging data indicate that the oxidative burst reflects activation of a membrane-bound NADPH oxidase closely resembling that operating in activated neutrophils, which underlies the expression of disease-resistance mechanisms.
Abstract: Rapid generation of superoxide and accumulation of H2O2 is a characteristic early feature of the hypersensitive response following perception of pathogen avirulence signals. Emerging data indicate that the oxidative burst reflects activation of a membrane-bound NADPH oxidase closely resembling that operating in activated neutrophils. The oxidants are not only direct protective agents, but H2O2 also functions as a substrate for oxidative cross-linking in the cell wall, as a threshold trigger for hypersensitive cell death, and as a diffusible signal for induction of cellular protectant genes in surrounding cells. Activation of the oxidative burst is a central component of a highly amplified and integrated signal system, also involving salicylic acid and perturbations of cytosolic Ca2+, which underlies the expression of disease-resistance mechanisms.

3,203 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
91% related
Inflammation
76.4K papers, 4M citations
90% related
Receptor
159.3K papers, 8.2M citations
88% related
Gene expression
113.3K papers, 5.5M citations
87% related
Apoptosis
115.4K papers, 4.8M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023261
2022500
2021369
2020387
2019422
2018401