scispace - formally typeset
Topic

Nafion

About: Nafion is a(n) research topic. Over the lifetime, 9110 publication(s) have been published within this topic receiving 320865 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: Light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure.
Abstract: Equivalent weight (EW) is the number of grams of dry Nafion per mole of sulfonic acid groups when the material is in the acid form. This is an average EW in the sense that the comonomer sequence distribution (that is usually unknown to the investigator and largely unreported) gives a distribution in m in this formula. EW can be ascertained by acid-base titration, by analysis of atomic sulfur, and by FT-IR spectroscopy. The relationship between EW and m is EW ) 100m + 446 so that, for example, the side chains are separated by around 14 CF2 units in a membrane of 1100 EW. Common at the time of this writing are Nafion 117 films. The designation “117” refers to a film having 1100 EW and a nominal thickness of 0.007 in., although 115 and 112 films have also been available. Early-reported studies involved 1200 EW samples as well as special experimental varieties, some being rather thin. The equivalent weight is related to the property more often seen in the field of conventional ion exchange resins, namely the ion exchange capacity (IEC), by the equation IEC ) 1000/EW. The mention of the molecular weight of high equivalent weight (EW > 1000 g‚mol-1) Nafion is almost absent in the literature, although the range 105-106 Da has been mentioned. As this polymer does not form true solutions, the common methods of light scattering and gel permeation chromatography cannot be used to determine molecular weight as well as the size and shape of isolated, truly dissolved molecules. Studies of the structure of this polymer in solvent (albeit not a true solution) will be mentioned in the scattering section of this review. It should be noted that Curtin et al. performed size exclusion chromatography determinations of the molecular weight distribution in Nafion aqueous dispersions after they were heated to high temperatures (230, 250, and 270 °C).1 Before heating, there was a high molecular weight shoulder on a bimodal distribution, due to molecular aggregates, but this shoulder disappeared upon heating, which indicated that the aggregates were disrupted. The peaks for the monomodal distribution for the heated samples were all located at molecular weights slightly higher than 105 g‚mol-1. Also, light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure. Nafion ionomers are usually derived from the thermoplastic -SO2F precursor form that can be extruded into sheets of required thickness. Strong interactions between the ionic groups are an obstacle to melt processing. This precursor does not possess the clustered morphology that will be of great concern in this article but does possess Teflon-like crystallinity which persists when the sulfonyl fluoride form is converted to, for example, the K+ form by reacting it with KOH in water and DMSO. Thereafter, the -SO3H form is achieved by soaking the film in a sufficiently concentrated aqueous acid solution. Extrusion of the sulfonyl fluoride precursor can cause microstructural orientation in the machine direction, * Address correspondence to either author. Phone: 601-266-5595/ 4480. Fax: 601-266-5635. E-mail: Kenneth.Mauritz@usm.edu; RBMoore@usm.edu. 4535 Chem. Rev. 2004, 104, 4535−4585

3,783 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explain the transport properties and the swelling behaviour of NAFION and different sulfonated polyetherketones in terms of distinct differences on the microstructures and in the p K a of the acidic functional groups.
Abstract: The transport properties and the swelling behaviour of NAFION and different sulfonated polyetherketones are explained in terms of distinct differences on the microstructures and in the p K a of the acidic functional groups. The less pronounced hydrophobic/hydrophilic separation of sulfonated polyetherketones compared to NAFION corresponds to narrower, less connected hydrophilic channels and to larger separations between less acidic sulfonic acid functional groups. At high water contents, this is shown to significantly reduce electroosmotic drag and water permeation whilst maintaining high proton conductivity. Blending of sulfonated polyetherketones with other polyaryls even further reduces the solvent permeation (a factor of 20 compared to NAFION), increases the membrane flexibility in the dry state and leads to an improved swelling behaviour. Therefore, polymers based on sulfonated polyetherketones are not only interesting low-cost alternative membrane material for hydrogen fuel cell applications, they may also help to reduce the problems associated with high water drag and high methanol cross-over in direct liquid methanol fuel cells (DMFC). The relatively high conductivities observed for oligomers containing imidazole as functional groups may be exploited in fully polymeric proton conducting systems with no volatile proton solvent operating at temperatures significantly beyond 100°C, where methanol vapour may be used as a fuel in DMFCs.

2,631 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the key requirements for the proton exchange membranes (PEM) used in fuel cell applications, along with a description of the membrane materials currently being used and their ability to meet these requirements.
Abstract: Proton-exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for clean and efficient power generation in the twenty-first century. Proton exchange membranes (PEMs) are the key components in fuel cell system. The researchers have focused to reach the proton exchange membrane with high proton conductivity, low electronic conductivity, low permeability to fuel, low electroosmotic drag coefficient, good chemical/thermal stability, good mechanical properties and low cost. These are classified into the “iron triangle” of performance, durability, and cost. Current PEMFC technology is based on expensive perflourinated proton-exchange membranes (PEMs) that operate effectively only under fully hydrated conditions. There is considerable application-driven interest in lowering the membrane cost and extending the operating window of PEMs. PEMFC system complexity could be reduced by the development of ‘water-free’ electrolytes that do not require hydration. It also enables the PEMFC to be operated under ‘warm’ conditions (i.e. above 100 °C) thus further improving its efficiency. Capital cost could also be further reduced because at warmer conditions less Pt could be used. This paper presents an overview of the key requirements for the proton exchange membranes (PEM) used in fuel cell applications, along with a description of the membrane materials currently being used and their ability to meet these requirements. A number of possible alternative candidates are reviewed and presented in this paper. Also discussed are some of the new materials, technologies, and research directions being pursued to try to meet the demanding performance and durability needs of the PEM fuel cell industry. The alternative PEMs are classified into three categories: (1) modified Nafion® composite membranes; (2) functionalized non-fluorinated membranes and composite membranes therein; and (3) acid–base composite membranes. Several commonly used inorganic additives are reviewed in the context of composite membranes. Finally, the general methods of the measuring and evaluating of proton exchange membrane properties have been investigated such as proton conductivity, ion exchange capacity, water uptake, gas permeability, methanol permeability, durability, thermal stability and fuel cell performance test.

1,462 citations

Journal ArticleDOI
M Rikukawa1, K Sanui1
TL;DR: In this paper, the authors present an overview of the synthesis, chemical and electrochemical properties, and polymer electrolyte fuel cell applications of new proton-conducting polymers based on hydrocarbon polymers.
Abstract: This paper presents an overview of the synthesis, chemical and electrochemical properties, and polymer electrolyte fuel cell applications of new proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Due to their chemical stability, high degree of proton conductivity, and remarkable mechanical properties, perfluorinated polymer electrolytes such as Nafion ® , Aciplex ® , Flemion ® , and Dow membranes are some of the most promising electrolyte membranes for polymer electrolyte fuel cells. A number of reviews on the synthesis, electrochemical properties, and fuel cell applications of perfluorinated polymer electrolytes have also appeared during this period. While perfluorinated polymer electrolytes have satisfactory properties for a successful fuel cell electrolyte membrane, the major drawbacks to large-scale commercial use involve cost and low proton-conductivities at high temperatures and low humidities. Presently, one of the most promising ways to obtain high performance proton-conducting polymer electrolyte membranes is the use of hydrocarbon polymers for the polymer backbone. The present review attempts for the first time to summarize the synthesis, chemical and electrochemical properties, and fuel cell applications of new proton-conducting polymer electrolytes based on hydrocarbon polymers that have been made during the past decade.

1,430 citations

Journal ArticleDOI
TL;DR: In this article, the diffusion coefficient and relaxation time of water in the membrane and the protonic conductivity of the membrane as functions of membrane water content were measured, and the ratio of water molecules carried across the membrane per proton transported, the electro-osmotic drag coefficient, was determined for a limited number of water contents.
Abstract: Water uptake and transport properties of Nafion[reg sign] 117 membranes at 30 C are reported here. Specifically, the authors have determined the amount of water taken up by membranes immersed in liquid water and by membranes exposed to water vapor of variable water activity. Transport parameters measured are the diffusion coefficient and relaxation time of water in the membrane and the protonic conductivity of the membrane as functions of membrane water content. The ratio of water molecules carried across the membrane per proton transported, the electro-osmotic drag coefficient, also was determined for a limited number of membrane water contents. The drag coefficient is contrasted with the experimentally determined net water transport across an operating PEM fuel cell.

1,333 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
86% related
Aqueous solution
189.5K papers, 3.4M citations
86% related
Graphene
144.5K papers, 4.9M citations
85% related
Nanoparticle
85.9K papers, 2.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202215
2021336
2020367
2019386
2018393
2017425