scispace - formally typeset
Search or ask a question
Topic

Nafion

About: Nafion is a research topic. Over the lifetime, 9110 publications have been published within this topic receiving 320865 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of elastic and highly conductive poly(2,6-dimethylphenylene oxide) (PPO)-based AEMs (x(QH)3QPPO) containing flexible, long-chain, multication cross-links are presented.
Abstract: Anion exchange membranes (AEMs) are a promising class of materials that enable non-noble metals to be used as catalysts in fuel cells. Compared to their acidic counterparts, typically Nafion and other perfluorosulfonate-based membranes, the low OH– conductivity in AEMs remains a concern as these materials are developed for practical applications. Cross-linked macromolecular structures are a popular way to optimize the trade-off between the ionic conductivity and the water swelling of AEMs with high ion exchange capacities (IECs). However, common cross-linked AEMs (e.g., x(QH)QPPO) that have high degrees of cross-linking with low molecular weight between cross-links are usually mechanically brittle. Moreover, the cross-links in AEMs can hinder the transport of OH–, leading to unsatisfactory conductivities. Here we report a series of elastic and highly conductive poly(2,6-dimethylphenylene oxide) (PPO)-based AEMs (x(QH)3QPPO) containing flexible, long-chain, multication cross-links. The strength and flexibi...

139 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focused on the characterization of gas permeation through Nafion, the most commonly used polymer electrolyte membrane (PEM) for low-temperature fuel cells and water electrolyzers.
Abstract: This study focuses on the characterization of gas permeation through Nafion, the most commonly used polymer electrolyte membrane (PEMs) for low-temperature fuel cells and water electrolyzers. In the first part of this study, novel modifications of the electrochemical monitoring technique to precisely measure the hydrogen and oxygen permeabilities of Nafion are presented. With these techniques, the gas permeabilities of Nafion were observed to be independent of pressures, which was ascribed to a solely diffusive process. Moreover, the temperature dependence of the hydrogen and oxygen permeabilities through Nafion in the fully hydrated state (where the water content is independent of the temperature) were measured in order to determine the activation energies of the permeation mechanisms. On the basis of the measured influence of temperature and relative humidity on the gas permeabilities of Nafion, the pathways for gas permeation through its aqueous and solid phase are qualitatively discussed. The second p...

138 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the proton conductance of Nafion 117 using a direct current four-point probe technique, while the water phase was determined from differential scanning calorimetry of the melting transitions.
Abstract: The proton conductance of Nafion 117 was measured as a function of water content and temperature and compared to changes in the phase state of water. Conductance was measured using a direct current four-point probe technique, while the water phase was determined from differential scanning calorimetry of the melting transitions. Arrhenius plots of conductance show a crossover in the activation energy for proton transport for temperatures coinciding with the melting and freezing of water. This crossover temperature depends on the membrane's water content per acid group, λ, and displays hysteresis between heating and cooling. Using calorimetry to estimate the fraction of the frozen water phase, both the crossover temperature and the hysteresis are found to correlate with the phase state of the water. For membranes starting with water contents above λ ∼ 8, the calorimetry and conductivity curves merge at low temperature, suggesting the formation of a common acid hydrate with similar network connectivity; for lower starting water contents, the low-temperature conductivity drops rapidly with λ. Based on Poisson-Boltzmann models, differences between the conductivity and calorimetry are attributed to gradients in the proton concentration that result in a proton-depleted core in the hydrated pores, which freezes first and contributes minimally to conductivity.

138 citations

Journal ArticleDOI
TL;DR: In this article, the impact of solvent/dispersion media was probed by preparing films from two different types of Nafion dispersions, i.e., IPA-diluted dispersion and nafion-in-water dispersion.
Abstract: Self-assembled Nafion films of varying thickness were generated on SiO2 terminated silicon wafer by immersion in Nafion dispersions of different concentrations. The impact of solvent/dispersion media was probed by preparing films from two different types of Nafion dispersions—IPA-diluted dispersion and Nafion-in-water dispersion. The thickness of films was ascertained by three different techniques: variable angle spectroscopic ellipsometry (VASE), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The three techniques yielded consistent nominal thicknesses of 4, 10, 30, 55, 75, 110, 160, and 300 nm for films self-assembled from IPA-diluted Nafion dispersions of concentrations 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, and 5.0 wt %, respectively. Films generated from 0.25–5.0 wt % Nafion-in-water dispersions generated comparable thicknesses. An interesting finding of our work is the observation of bimodal surface wettability, investigated by water contact angle. The sub-55 nm films were fo...

138 citations

Journal ArticleDOI
TL;DR: In this article, a green biopolymer, lignin, was firstly employed as the additive in the pristine SPEEK membrane to replace the Nafion membrane for the VRB applications.

138 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
87% related
Carbon nanotube
109K papers, 3.6M citations
86% related
Aqueous solution
189.5K papers, 3.4M citations
86% related
Graphene
144.5K papers, 4.9M citations
85% related
Nanoparticle
85.9K papers, 2.6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023253
2022503
2021338
2020367
2019386
2018393