scispace - formally typeset
Search or ask a question
Topic

Nanocomposite

About: Nanocomposite is a research topic. Over the lifetime, 71321 publications have been published within this topic receiving 1911332 citations. The topic is also known as: nanocomposites.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new, versatile and environmentally benign synthesis approach by polymer melt intercalation is discussed. But, unlike in-situ polymerization and solution inter-calation, melt interalation involves mixing the layered silicates with the polymer and heating the mixture above the softening point of the polymer.
Abstract: Polymer nanocomposites with layered silicates as the inorganic phase (reinforcement) are discussed. The materials design and synthesis rely on the ability of layered silicates to intercalate in the galleries between their layers a wide range of monomers and polymers. Special emphasis is placed on a new, versatile and environmentally benign synthesis approach by polymer melt intercalation. In contrast to in-situ polymerization and solution intercalation, melt intercalation involves mixing the layered silicate with the polymer and heating the mixture above the softening point of the polymer. Compatibility with various polymers is accomplished by derivatizing the silicates with alkyl ammonium cations via an ion exchange reaction. By fine-tuning the surface characteristics nanodispersion (i. e. intercalation or delamination) can be accomplished. The resulting polymer layered silicate (PLS) nanocomposites exhibit properties dramatically different from their more conventional counterparts. For example, PLS nanocomposites can attain a particular degree of stiffness, strength and barrier properties with far less inorganic content than comparable glass- or mineral reinforced polymers and, therefore, they are far lighter in weight. In addition, PLS nanocomposites exhibit significant increase in thermal stability as well as self-extinguishing characteristics. The combination of improved properties, convenient processing and low cost has already led to a few commercial applications with more currently under development.

3,468 citations

Journal ArticleDOI
TL;DR: In this article, a review of polymer nanocomposites with single-wall or multi-wall carbon nanotubes is presented, and the current challenges to and opportunities for efficiently translating the extraordinary properties of carbon-nanotubes to polymer matrices are summarized.
Abstract: We review the present state of polymer nanocomposites research in which the fillers are single-wall or multiwall carbon nanotubes. By way of background we provide a brief synopsis about carbon nanotube materials and their suspensions. We summarize and critique various nanotube/polymer composite fabrication methods including solution mixing, melt mixing, and in situ polymerization with a particular emphasis on evaluating the dispersion state of the nanotubes. We discuss mechanical, electrical, rheological, thermal, and flammability properties separately and how these physical properties depend on the size, aspect ratio, loading, dispersion state, and alignment of nanotubes within polymer nanocomposites. Finally, we summarize the current challenges to and opportunities for efficiently translating the extraordinary properties of carbon nanotubes to polymer matrices in hopes of facilitating progress in this emerging area.

3,239 citations

Journal ArticleDOI
Hao Zhang1, Xiao-Jun Lv1, Yueming Li1, Ying Wang1, Jinghong Li1 
26 Jan 2010-ACS Nano
TL;DR: A chemically bonded TiO(2) (P25)-graphene nanocomposite photocatalyst with graphene oxide and P25, using a facile one-step hydrothermal method could provide new insights into the fabrication of a TiO (2)-carbon composite as high performance photocatalysts and facilitate their application in the environmental protection issues.
Abstract: Herein we obtained a chemically bonded TiO2 (P25)-graphene nanocomposite photocatalyst with graphene oxide and P25, using a facile one-step hydrothermal method. During the hydrothermal reaction, both of the reduction of graphene oxide and loading of P25 were achieved. The as-prepared P25-graphene photocatalyst possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously, which was rarely reported in other TiO2−carbon photocatalysts. Hence, in the photodegradation of methylene blue, a significant enhancement in the reaction rate was observed with P25-graphene, compared to the bare P25 and P25-CNTs with the same carbon content. Overall, this work could provide new insights into the fabrication of a TiO2−carbon composite as high performance photocatalysts and facilitate their application in the environmental protection issues.

2,944 citations

Journal ArticleDOI
TL;DR: In this article, the effects of particle size, particle/matrix interface adhesion and particle loading on the stiffness, strength and toughness of such particulate polymer composites are reviewed.
Abstract: There have been a number of review papers on layered silicate and carbon nanotube reinforced polymer nanocomposites, in which the fillers have high aspect ratios. Particulate–polymer nanocomposites containing fillers with small aspect ratios are also an important class of polymer composites. However, they have been apparently overlooked. Thus, in this paper, detailed discussions on the effects of particle size, particle/matrix interface adhesion and particle loading on the stiffness, strength and toughness of such particulate–polymer composites are reviewed. To develop high performance particulate composites, it is necessary to have some basic understanding of the stiffening, strengthening and toughening mechanisms of these composites. A critical evaluation of published experimental results in comparison with theoretical models is given.

2,767 citations

Journal ArticleDOI
TL;DR: In this paper, an extended account of the various chemical strategies for grafting polymers onto carbon nanotubes and the manufacturing of carbon-nanotube/polymer nanocomposites is given.

2,766 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
95% related
Graphene
144.5K papers, 4.9M citations
93% related
Oxide
213.4K papers, 3.6M citations
92% related
Thin film
275.5K papers, 4.5M citations
90% related
Polymerization
147.9K papers, 2.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237,400
202215,227
20215,776
20205,861
20195,771
20185,588