scispace - formally typeset
Search or ask a question

Showing papers on "Nanofluid published in 1996"


Journal ArticleDOI
TL;DR: In this article, a new class of heat transfer fluids is developed by suspending nanocrystalline particles in liquids such as water or oil, and the resulting nanofluids possess extremely high thermal conductivities compared to the liquids without dispersed nanoparticles.
Abstract: Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids required in many industrial applications. To overcome this limitation, a new class of heat transfer fluids is being developed by suspending nanocrystalline particles in liquids such as water or oil. The resulting nanofluids possess extremely high thermal conductivities compared to the liquids without dispersed nanocrystalline particles. For example, 5 volume % of nanocrystalline copper oxide particles suspended in water results in an improvement in thermal conductivity of almost 60% compared to water without nanoparticles. Excellent suspension properties are also observed, with no significant settling of nanocrystalline oxide particles occurring in stationary fluids over time periods longer than several days. Direct evaporation of Cu nanoparticles into pump oil results in similar improvements in thermal conductivity compared to oxide-in-water systems, but importantly, requires far smaller concentrations of dispersed nanocrystalline powder.

968 citations