scispace - formally typeset
Search or ask a question
Topic

Nanofluid

About: Nanofluid is a research topic. Over the lifetime, 23986 publications have been published within this topic receiving 677384 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a numerical comparative analysis between the most usual thermal enhancement techniques, which is conducted with a validated CFD model in SolidWorks Flow Simulation for various fluid temperature levels.
Abstract: Parabolic trough collector is one of the most usual solar collectors for applications up to 400 °C. The thermal enhancement of this collector concentrates a lot of interest and various techniques are tested in order for the thermal efficiency to be maximized with a reasonable penalty in the pressure drop. The use of nanofluids as working fluids, as well as the use of flow turbulators, mainly inserts and internal fins or tube dimples are the main techniques which are examined. The objective of this work is to give a complete literature review of the existing studies on this domain and to present a numerical comparative analysis between the most usual thermal enhancement techniques. More specifically, the use of oil-based nanofluids with 6% CuO is compared with the use of internal rectangular fins in the absorber, while the combination of these techniques is also examined. The analysis is conducted with a validated CFD model in SolidWorks Flow Simulation for various fluid temperature levels. According to the final results, the use of nanofluids leads to 0.76% thermal efficiency enhancement, the use of internal fins to 1.10% and the combination of these techniques to 1.54%. Moreover, emphasis is given in the pressure drop of the examined cases and in the evaluation criteria which are used in every case.

197 citations

Journal ArticleDOI
TL;DR: In this article, the influence of external magnetic source on Fe3O4-water heat transfer in a cavity with circular hot cylinder is studied and a new numerical method is chosen namely CVFEM.

197 citations

Journal ArticleDOI
TL;DR: In this paper, the authors found that the highly enhanced critical heat flux (CHF) in the nanofluids containing graphene/graphene-oxide nanosheets (GON) cannot be explained by both the improved surface wettability and the capillarity of the nanoparticles deposition layer.
Abstract: The superb thermal conduction property of graphene establishes graphene as an excellent material for thermal management. In this paper, we selected graphene/graphene oxide nanosheets as the additives in nanofluids. The authors interestingly found that the highly enhanced critical heat flux (CHF) in the nanofluids containing graphene/graphene-oxide nanosheets (GON) cannot be explained by both the improved surface wettability and the capillarity of the nanoparticles deposition layer. Here we highlights that the GON nanofluid can be exploited to maximize the CHF the most efficiently by building up a characteristically ordered porous surface structure due to its own self-assembly characteristic resulting in a geometrically changed critical instability wavelength.

196 citations

Journal ArticleDOI
TL;DR: In this article, the authors have developed higher convective heat transfer behavior of graphene nanofluids through the shell and tube heat exchanger under laminar flow and showed that adding 0.075% of graphene to the base fluid contributes to an improvement of thermal conductivity up to 31.83% at saturation concentration of graphene and an enhancement in heat transfer coefficient depending on the flow conditions.

196 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical solution to the general problem of MHD flow, heat and mass transfer of viscous incompressible nanofluid past a uniformly stretching sheet through porous media with heat generation/absorption, thermal radiation, chemical reaction, thermo-diffusion and diffusion-thermo effects is presented.

196 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
91% related
Thermal conductivity
72.4K papers, 1.4M citations
85% related
Laminar flow
56K papers, 1.2M citations
83% related
Reynolds number
68.4K papers, 1.6M citations
83% related
Combustion
172.3K papers, 1.9M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,677
20225,257
20213,659
20203,035
20192,990
20182,377