scispace - formally typeset
Search or ask a question
Topic

Nanofluid

About: Nanofluid is a research topic. Over the lifetime, 23986 publications have been published within this topic receiving 677384 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the electrostatic repulsion mechanism was used to stabilize nanoparticles and the resulting stable nanofluids were then used for both the transient and steady-state heat transfer experiments under natural convection conditions.
Abstract: This paper reports an experimental study on the natural convective heat transfer of nanofluids, an area in which little work has been carried out in the past. Aqueous-based titanium-dioxide nanofluids of various concentrations are formulated by using the two-step method and a high shear homogenizer is used to break large aggregates. Instead of the use of dispersant and/or surfactant, the electrostatic repulsion mechanism is adopted to stabilize nanoparticles. The resulting nanofluids are found to be very stable, although the actual measured particle size is much larger than the primary nanoparticle size. The stable nanofluids are then used for both the transient and steady-state heat transfer experiments under natural convection conditions. The results show that the presence of nanoparticles systematically decreases the natural convective heat transfer coefficient under the conditions of this study, which is an observation that contrasts with the previous expectation. Discussion of the results suggests that changes in the nanofluids' thermal conductivity and viscosity could not explain the observed decrease in the heat transfer coefficient, and particle-surface interactions may play an important role.

196 citations

Journal ArticleDOI
TL;DR: In this paper, the enhancement in yield of passive double slope solar still (DSSS) using Al2O3 nanoparticles in the basefluid (water) for two different masses 35 kg and 80 kg was presented.

196 citations

Journal ArticleDOI
TL;DR: An investigation for the flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium with very good agreement to validate the present results.
Abstract: In this paper, we present an investigation for the flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium. The Brownian motion and thermophoresis are taken into account according to Rosseland’s approximation. The governing coupled partial differential equations are non-dimensionalized and solved both numerically and analytically by local similarity method. The effects of involved parameters (velocity slip, temperature jump, thermal radiation, Prandtl number, Lewis number, Brownian motion, thermophoresis) on velocity, temperature and concentration profiles are presented graphically and analyzed. Moreover, the numerical results are compared with the analytical solutions obtained by Homotopy analysis method with very good agreement to validate the present results.

196 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared CFD predictions of single-phase and three different two-phase models (volume of fluid, mixture, Eulerian) for laminar mixed convection of Al2O3-water nanofluids.

196 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis has been carried out for the three dimensional flow of viscous nanofluid in the presence of partial slip and thermal radiation effects, where the flow is induced by a permeable stretching surface.

196 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
91% related
Thermal conductivity
72.4K papers, 1.4M citations
85% related
Laminar flow
56K papers, 1.2M citations
83% related
Reynolds number
68.4K papers, 1.6M citations
83% related
Combustion
172.3K papers, 1.9M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,677
20225,257
20213,659
20203,035
20192,990
20182,377