scispace - formally typeset
Search or ask a question

Showing papers on "Nanomedicine published in 2020"


Journal ArticleDOI
TL;DR: 24 research articles and reviews discussing different aspects of the EPR effect and cancer nanomedicine are collected, together providing a comprehensive and complete overview of the current state-of-the-art and future directions in tumor-targeted drug delivery.
Abstract: Following its discovery more than 30 years ago, the enhanced permeability and retention (EPR) effect has become the guiding principle for cancer nanomedicine development. Over the years, the tumor-targeted drug delivery field has made significant progress, as evidenced by the approval of several nanomedicinal anticancer drugs. Recently, however, the existence and the extent of the EPR effect - particularly in patients - have become the focus of intense debate. This is partially due to the disbalance between the huge number of preclinical cancer nanomedicine papers and relatively small number of cancer nanomedicine drug products reaching the market. To move the field forward, we have to improve our understanding of the EPR effect, of its cancer type-specific pathophysiology, of nanomedicine interactions with the heterogeneous tumor microenvironment, of nanomedicine behavior in the body, and of translational aspects that specifically complicate nanomedicinal drug development. In this virtual special issue, 24 research articles and reviews discussing different aspects of the EPR effect and cancer nanomedicine are collected, together providing a comprehensive and complete overview of the current state-of-the-art and future directions in tumor-targeted drug delivery.

388 citations


Journal ArticleDOI
TL;DR: The latest progress in the development of 2D nanomaterials for cancer theranostic applications is summarized.
Abstract: 2D nanomaterials with unique nanosheet structures, large surface areas, and extraordinary physicochemical properties have attracted tremendous interest. In the area of nanomedicine, research on graphene and its derivatives for diverse biomedical applications began as early as 2008. Since then, many other types of 2D nanomaterials, including transition metal dichalcogenides, transition metal carbides, nitrides and carbonitrides, black phosphorus nanosheets, layered double hydroxides, and metal-organic framework nanosheets, have been explored in the area of nanomedicine over the past decade. In particular, a large surface area makes 2D nanomaterials highly efficient drug delivery nanoplatforms. The unique optical and/or X-ray attenuation properties of 2D nanomaterials can be harnessed for phototherapy or radiotherapy of cancer. Furthermore, by integrating 2D nanomaterials with other functional nanoparticles or utilizing their inherent physical properties, 2D nanomaterials may also be engineered as nanoprobes for multimodal imaging of tumors. 2D nanomaterials have shown substantial potential for cancer theranostics. Herein, the latest progress in the development of 2D nanomaterials for cancer theranostic applications is summarized. Current challenges and future perspectives of 2D nanomaterials applied in nanomedicine are also discussed.

271 citations


Journal ArticleDOI
22 Jun 2020-Polymers
TL;DR: The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields as mentioned in this paper, and the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques.
Abstract: In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers.

231 citations


Journal ArticleDOI
TL;DR: The role of NPs in treating cancer among different drug delivery methods for cancer therapy is discussed and a wide range of nanomaterials based on organic, inorganic, lipid, or glycan compounds, as well as on synthetic polymers has been utilized for the development of new cancer therapeutics.
Abstract: Rapid growth in nanotechnology toward the development of nanomedicine agents holds massive promise to improve therapeutic approaches against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multifunctionality. Nowadays, nanoparticles (NPs) have multiple applications in different branches of science. In recent years, NPs have repetitively been reported to play a significant role in modern medicine. They have been analyzed for different clinical applications, such as drug carriers, gene delivery to tumors, and contrast agents in imaging. A wide range of nanomaterials based on organic, inorganic, lipid, or glycan compounds, as well as on synthetic polymers has been utilized for the development and improvement of new cancer therapeutics. In this study, we discuss the role of NPs in treating cancer among different drug delivery methods for cancer therapy.

192 citations


Journal ArticleDOI
TL;DR: In this review, a comprehensive review of researches on metal oxide nanoparticles, their nanoscale physicochemical properties, defining specific applications in the various fields of nanomedicine are provided.
Abstract: The development of new nanomaterials with high biomedical performance and low toxicity is essential to obtain more efficient therapy and precise diagnostic tools and devices. Recently, scientists often face issues of balancing between positive therapeutic effects of metal oxide nanoparticles and their toxic side effects. In this review, considering metal oxide nanoparticles as important technological and biomedical materials, the authors provide a comprehensive review of researches on metal oxide nanoparticles, their nanoscale physicochemical properties, defining specific applications in the various fields of nanomedicine. Authors discuss the recent development of metal oxide nanoparticles that were employed as biomedical materials in tissue therapy, immunotherapy, diagnosis, dentistry, regenerative medicine, wound healing and biosensing platforms. Besides, their antimicrobial, antifungal, antiviral properties along with biotoxicology were debated in detail. The significant breakthroughs in the field of nanobiomedicine have emerged in areas and numbers predicting tremendous application potential and enormous market value for metal oxide nanoparticles.

190 citations


Journal ArticleDOI
11 Jun 2020-Chem
TL;DR: This work utilizes the biocompatible CaCO3 nanoparticles as the template to guide the formation of pH-dissociable hollow coordination nanostructures, in which meso-tetra-(4-carboxyphenyl)porphine (TCPP) acts as the organic bridging molecule and ferric ion serves as the metallic center.

179 citations


Journal ArticleDOI
TL;DR: This review focuses on the detailed profile of NPs, its impact on biology and medicine, and their commercialization prospects.
Abstract: Nanotechnology is an emerging technology that deals with nanosized particles possessing crucial research roles and application. Disciplines like chemistry, biology, physics, engineering, materials science, and health sciences provide an accumulated knowledge of nanotechnology. Nonetheless, it has vast submissions precisely in biology, electronics, and medicine. Aimed at drug delivery system, nanoparticles are based on the mechanism of entrapment of the drugs or biomolecules into the interior structure of the particles; another mechanism could be that the drugs or the biomolecules can be absorbed onto the exterior surfaces of the particles. Currently, nanoparticles (NPs) are used in the delivery of drugs, proteins, genes, vaccines, polypeptides, nucleic acids, etc. In recent years, various applications of the drug delivery system via NPs have encountered an enormous position sector like pharmaceutical, medical, biological, and others. Considering the impact of NPs in drug delivery systems, this review focuses on the detailed profile of NPs, its impact on biology and medicine, and their commercialization prospects.

174 citations


Journal ArticleDOI
TL;DR: Clinical applications of iron oxide nanoparticles present poignant case studies of the opportunities, complexities, and challenges in cancer nanomedicine and illustrate the need for revised paradigms and multidisciplinary approaches to develop and translate nanomediines into clinical cancer care.

173 citations


Journal ArticleDOI
TL;DR: Recent advances in the polymer-guided self-assembly of inorganic nanoparticles in both bulk thin films and solution are summarized, with an emphasis on the role of polymers in the assembly process and functions of resulting nanostructures.
Abstract: The self-assembly of inorganic nanoparticles is of great importance in realizing their enormous potentials for broad applications due to the advanced collective properties of nanoparticle ensembles. Various molecular ligands (e.g., small molecules, DNAs, proteins, and polymers) have been used to assist the organization of inorganic nanoparticles into functional structures at different hierarchical levels. Among others, polymers are particularly attractive for use in nanoparticle assembly, because of the complex architectures and rich functionalities of assembled structures enabled by polymers. Polymer-guided assembly of nanoparticles has emerged as a powerful route to fabricate functional materials with desired mechanical, optical, electronic or magnetic properties for a broad range of applications such as sensing, nanomedicine, catalysis, energy storage/conversion, data storage, electronics and photonics. In this review article, we summarize recent advances in the polymer-guided self-assembly of inorganic nanoparticles in both bulk thin films and solution, with an emphasis on the role of polymers in the assembly process and functions of resulting nanostructures. Precise control over the location/arrangement, interparticle interaction, and packing of inorganic nanoparticles at various scales are highlighted.

173 citations


Journal ArticleDOI
TL;DR: The present review focuses on the recent applications of organic (liposomes, lipid-based nanoparticles, polymeric micelles, and polymeric nanoparticles), and inorganic (silver, silica, magnetic, zinc oxide), cobalt, selenium, and cadmium nanosystems in the domain of antibacterial delivery.
Abstract: Based on the recent reports of World Health Organization, increased antibiotic resistance prevalence among bacteria represents the greatest challenge to human health. In addition, the poor solubility, stability, and side effects that lead to inefficiency of the current antibacterial therapy prompted the researchers to explore new innovative strategies to overcome such resilient microbes. Hence, novel antibiotic delivery systems are in high demand. Nanotechnology has attracted considerable interest due to their favored physicochemical properties, drug targeting efficiency, enhanced uptake, and biodistribution. The present review focuses on the recent applications of organic (liposomes, lipid-based nanoparticles, polymeric micelles, and polymeric nanoparticles), and inorganic (silver, silica, magnetic, zinc oxide (ZnO), cobalt, selenium, and cadmium) nanosystems in the domain of antibacterial delivery. We provide a concise description of the characteristics of each system that render it suitable as an antibacterial delivery agent. We also highlight the recent promising innovations used to overcome antibacterial resistance, including the use of lipid polymer nanoparticles, nonlamellar liquid crystalline nanoparticles, anti-microbial oligonucleotides, smart responsive materials, cationic peptides, and natural compounds. We further discuss the applications of antimicrobial photodynamic therapy, combination drug therapy, nano antibiotic strategy, and phage therapy, and their impact on evading antibacterial resistance. Finally, we report on the formulations that made their way towards clinical application.

158 citations


Journal ArticleDOI
TL;DR: The current status of the field and the main implementations of biomedical DNA nanostructures are summarized, with a focus on open challenges and untackled issues and possible solutions.
Abstract: DNA nanotechnology holds substantial promise for future biomedical engineering and the development of novel therapies and diagnostic assays. The subnanometer-level addressability of DNA nanostructures allows for their precise and tailored modification with numerous chemical and biological entities, which makes them fit to serve as accurate diagnostic tools and multifunctional carriers for targeted drug delivery. The absolute control over shape, size, and function enables the fabrication of tailored and dynamic devices, such as DNA nanorobots that can execute programmed tasks and react to various external stimuli. Even though several studies have demonstrated the successful operation of various biomedical DNA nanostructures both in vitro and in vivo, major obstacles remain on the path to real-world applications of DNA-based nanomedicine. Here, we summarize the current status of the field and the main implementations of biomedical DNA nanostructures. In particular, we focus on open challenges and untackled issues and discuss possible solutions.

Journal ArticleDOI
05 Feb 2020
TL;DR: The phosphorus science to unify current phosphorus-based nanomaterials is introduced and their synthesis methods are discussed and the representative nanoplatforms utilizing the corresponding properties are highlighted.
Abstract: Summary Phosphorus plays an indispensable role in energy metabolism, acid-base balance, and genetic substances transfer. As nanotechnology advances, plenty of phosphorus-based nanomaterials have been developed and widely used in the fields of biology and medicine. The size and structure of phosphorus-based nanomaterials give them unique physicochemical, optical, and biological properties, greatly increasing the variety of nanomedicine. The excellent properties further promote the applications of phosphorus-based nanomaterials in drug nanocarriers, tumor theranostics, biosensors, and bone formation. In this review, we first introduce the phosphorus science to unify current phosphorus-based nanomaterials and discuss their synthesis methods. Furthermore, the representative nanoplatforms utilizing the corresponding properties are highlighted. Finally, research development, potential challenges, and perspectives for further improvement of phosphorus-based nanomaterials in biomedicines are presented.

Journal ArticleDOI
TL;DR: It is found that biodegradable polymers are commonly functionalized for various purposes, and their property of being naturally degraded under biological conditions allows them to be used for many biomedical purposes, including bio-imaging, targeted drug delivery, implantation and tissue engineering.
Abstract: Background: Nanomedicine is a field of science that uses nanoscale materials for the diagnosis and treatment of human disease. It has emerged as an important aspect of the therapeutics, but at the same time, also raises concerns regarding the safety of the nanomaterials involved. Recent applications of functionalized biodegradable nanomaterials have significantly improved the safety profile of nanomedicine. Objective: Our goal is to evaluate different types of biodegradable nanomaterials that have been functionalized for their biomedical applications. Method: In this review, we used PubMed as our literature source and selected recently published studies on biodegradable nanomaterials and their applications in nanomedicine. Results: We found that biodegradable polymers are commonly functionalized for various purposes. Their property of being naturally degraded under biological conditions allows these biodegradable nanomaterials to be used for many biomedical purposes, including bio-imaging, targeted drug delivery, implantation and tissue engineering. The degradability of these nanoparticles can be utilized to control cargo release, by allowing efficient degradation of the nanomaterials at the target site while maintaining nanoparticle integrity at off-target sites. Conclusion: While each biodegradable nanomaterial has its advantages and disadvantages, with careful design and functionalization, biodegradable nanoparticles hold great future in nanomedicine.

Journal ArticleDOI
TL;DR: In vivo results demonstrate that the combination of chemotherapy and chemodynamic therapy effectively suppresses the tumor growth, meantime the systemic toxicity of this nanomedicine is greatly avoided.
Abstract: The incorporation of new modalities into chemotherapy greatly enhances the anticancer efficacy combining the merits of each treatment, showing promising potentials in clinical translations. Herein, a hybrid nanomedicine (Au/FeMOF@CPT NPs) is fabricated using metal-organic framework (MOF) nanoparticles and gold nanoparticles (Au NPs) as building blocks for cancer chemo/chemodynamic therapy. MOF NPs are used as vehicles to encapsulate camptothecin (CPT), and the hybridization by Au NPs greatly improves the stability of the nanomedicine in a physiological environment. Triggered by the high concentration of phosphate inside the cancer cells, Au/FeMOF@CPT NPs effectively collapse after internalization, resulting in the complete drug release and activation of the cascade catalytic reactions. The intracellular glucose can be oxidized by Au NPs to produce hydrogen dioxide, which is further utilized as chemical fuel for the Fenton reaction, thus realizing the synergistic anticancer efficacy. Benefitting from the enhanced permeability and retention effect and sophisticated fabrications, the blood circulation time and tumor accumulation of Au/FeMOF@CPT NPs are significantly increased. In vivo results demonstrate that the combination of chemotherapy and chemodynamic therapy effectively suppresses the tumor growth, meantime the systemic toxicity of this nanomedicine is greatly avoided.

Journal ArticleDOI
TL;DR: This review focused in providing examples of dendrimers used in nanomedicine, with a total of six derivatives in clinical trials and seven products available in the market.

Journal ArticleDOI
TL;DR: A short overview of the enzyme-mimetic activities of inorganic nanoparticles and their applications is provided, with an emphasis on ceria and iron oxide nanoparticles, two of the most widely used nanozymes.

Journal ArticleDOI
TL;DR: This tutorial review analyzes the impact of nanomedicine mechanical properties on in vivo transport processes and highlights the most recent advances in drug delivery efficiency and antitumor efficacy.
Abstract: Modulating nanomedicine mechanical properties for enhanced drug delivery to tumors has attracted increasing attention in the past few decades. In this tutorial review, we analyze the impact of nanomedicine mechanical properties on in vivo transport processes and highlight the most recent advances in drug delivery efficiency and antitumor efficacy. Typical nanoparticles that have been explored for this purpose since 2000 are summarized while the methods to tune and the techniques to characterize nanomedicine mechanical properties are introduced. In the end, challenges and perspectives on tailoring nanomedicine mechanical properties for tumor targeting delivery are discussed.

Journal ArticleDOI
TL;DR: The main focus is on comprehensive presentation of both physicochemical properties and the possibilities of using silver and gold nanoparticles, as well as zinc oxide and titanium oxide nanoparticles as drug carriers and in the treatment of cancer.
Abstract: The rapid development of medicine has forced equally rapid progress in the field of pharmaceuticals. In connection with the expensive and time-consuming process of finding new drugs, great emphasis is put on the design and use of metal and metal oxides nanoparticles in nanomedicine. The main focus is on comprehensive presentation of both physicochemical properties and the possibilities of using, in particular, silver (Ag) and gold (Au) nanoparticles, as well as zinc oxide (ZnO) and titanium oxide (TiO2) nanoparticles as drug carriers and in the treatment of cancer. An important element of this subject is the possibility of occurrence of toxic effects of these nanoparticles. For this reason, possible mechanisms of toxic actions are presented, as well as methods used to reduce their toxicity to ensure the safety of drug carriers based on these nanostructures.

Journal ArticleDOI
TL;DR: This paper summarized recent progress on the cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy, and focused primarily on six different types of cell membranes-coated nanoparticles with an emphasis on the preparation strategies from the perspective of the correlation between the properties of nanoparticles and cell membrane.

Journal ArticleDOI
TL;DR: The present review highlights novel approaches focusing on the recent innovative strategies for wound healing and infection controls based on nanomaterials, including nanoparticles, nanocomposites, and scaffolds, which are elucidated in detail.
Abstract: Nanomaterial-based wound healing has tremendous potential for treating and preventing wound infections with its multiple benefits compared with traditional treatment approaches. In this regard, the physiochemical properties of nanomaterials enable researchers to conduct extensive studies on wound-healing applications. Nonetheless, issues concerning the use of nanomaterials in accelerating the efficacy of existing medical treatments remain unresolved. The present review highlights novel approaches focusing on the recent innovative strategies for wound healing and infection controls based on nanomaterials, including nanoparticles, nanocomposites, and scaffolds, which are elucidated in detail. In addition, the efficacy of nanomaterials as carriers for therapeutic agents associated with wound-healing applications has been addressed. Finally, nanomaterial-based scaffolds and their premise for future studies have been described. We believe that the in-depth analytical review, future insights, and potential challenges described herein will provide researchers an up-to-date reference on the use of nanomedicine and its innovative approaches that can enhance wound-healing applications.

Journal ArticleDOI
Yun Liu1, Guangze Yang1, Song Jin1, Letao Xu1, Chun-Xia Zhao1 
TL;DR: This Minireview presents an overview of recent research on developing nanoparticles with high drug loading (>10 wt%) from the perspective of synthesis strategies, including post-loading, co- loading, and pre-loading.
Abstract: Formulating drugs into nanoparticles offers many attractive advantages over free drugs including improved bioavailability, minimized toxic side effects, enhanced drug delivery, feasibility of incorporating other functions such as controlled release, imaging agents for imaging, targeting delivery, loading more than one drug for combination therapies. One of the key parameters is drug loading which is defined as the mass ratio of drug to drug‐loaded nanoparticles. Currently, most nanoparticle systems have relatively low drug loading ( 10 wt%) from the perspective of synthesizing strategies, including post‐loading, co‐loading, and pre‐loading. Based on these three different strategies, various nanoparticle systems with different materials and drugs are summarized and discussed in terms of their synthesis methods, drug loadings, encapsulation efficiencies, release profiles, stabilities, and their applications in drug delivery. The advantages and disadvantages of these strategies are discussed with an objective of providing useful design rules for future development of high drug loading nanoparticles.

Journal ArticleDOI
01 Feb 2020
TL;DR: 2D nanomaterials represent one of the next-generation biomaterials with versatile physicochemical advantages that allow for diverse biomedical applications in disease diagnosis, prevention, and treatment and the challenges and future development strategies of LDH nanomedicine are discussed.
Abstract: 2D nanomaterials represent one of the next-generation biomaterials with versatile physicochemical advantages that allow for diverse biomedical applications in disease diagnosis, prevention, and treatment. In particular, layered double hydroxide (LDH) nanoparticles, as a typical 2D nanomaterial, have recently shown unprecedented advances in controllable and simplified chemical construction, versatile surface engineering, and comprehensive biological investigation. To realize in vivo biomedical applications, recent efforts have been substantially devoted to a few critical aspects of LDH nanomedicine including nanoparticle stability in physiological environments, accumulation at the disease-targeted site, selective biological response to the nanoparticle, systematic biosafety examination, integration with multiple diagnostic and therapeutic modalities, and the adjuvant activity and suitability for gene-based and protein-based vaccines, which are herein comprehensively reviewed. The challenges and future development strategies of LDH nanomedicine are also discussed toward practical biomedical applications to benefit patients.

Journal ArticleDOI
12 Mar 2020
TL;DR: This research presents a novel approach to nanomedicine that addresses the challenge of integrating nanofiltration into the delivery mechanism of drugs to overcome the limitations of conventional carriers.
Abstract: Nanotechnology has been actively employed in the development of drug-delivery systems overcoming the limitations of conventional carriers. In nanomedicine, the ultimate goal is to design and develo...

Journal ArticleDOI
Qun Guan1, Guang-Bo Wang1, Le-Le Zhou1, Wen-Yan Li1, Yu-Bin Dong1 
16 Sep 2020
TL;DR: Covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility as mentioned in this paper.
Abstract: Cancer nanomedicine is one of the most promising domains that has emerged in the continuing search for cancer diagnosis and treatment. The rapid development of nanomaterials and nanotechnology provide a vast array of materials for use in cancer nanomedicine. Among the various nanomaterials, covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility. In this comprehensive review, recent developments and key achievements of COFs are provided, including their structural design, synthesis methods, nanocrystallization, and functionalization strategies. Subsequently, a systematic overview of the potential oncotherapy applications achieved till date in the fast-growing field of COFs is provided with the aim to inspire further contributions and developments to this nascent but promising field. Finally, development opportunities, critical challenges, and some personal perspectives for COF-based cancer therapeutics are presented.

Journal ArticleDOI
TL;DR: A viable preparation method for producing small spherical shaped nanoparticles expected to be applied to the fields of nanomedicine.
Abstract: The field of nanobiotechnology and nanomedicine paves way for the use of several nanoparticles. Especially, in biomedical applications, the silver nanoparticles (AgNPs), gold nanoparticles (AuNPs) and palladium nanoparticles (PdNPs) are found most vital and promising, among other nanoparticles. The biomedical activities of these particles mostly depend on their shape, size and distribution. Preparation of these particles in an eco-friendly method is an immediate need of the society. Herein, AuNPs, AgNPs and PdNPs (MNPS) were synthesized by Solanum nigrum Leaves (SNL) extract. The structural and morphological studies were carried out by using TEM, XRD and EDAX, while the optical and chemical properties were studied using UV–visible spectrum and FTIR spectroscopy. The particles obtained were found to possess a FCC (Face Centered Cubic) structure. TEM images of Ag, Au and PdNPs showed spherical well dispersed nanoparticles with average size of 3.46 nm, 9.39 nm and 21.55 nm respectively. The FTIR spectra confirmed polyphenols and antioxidants in SNL extract act as reducing and capping agents respectively in the synthesis of MNPs. The EDX technique confirmed the presence of silver, gold and palladium nanoparticles. Antimicrobial studies noted that the AgNPs have effective inhibition against E. coli. The complete reduction of 4-Nitrophenol and the formation of 4-Aminophenol with the presence of NaBH4 was chosen for the study of catalytic activities of the prepared MNPs. The reduction time of Au and Pd catalyst were smaller compared to that of Ag. This viable preparation method for producing small spherical shaped nanoparticles expected to the applied to the fields of nanomedicine.

Journal ArticleDOI
TL;DR: The obtained results confirm that the doping of ZnO NPs represents a valuable tool to improve the corresponding biomedical properties with respect to the undoped counterpart, and suggest that a new application of X-ray crystalline nanoparticles in nanomedicine can be envisioned.
Abstract: Smart nanoparticles for medical applications have gathered considerable attention due to an improved biocompatibility and multifunctional properties useful in several applications, including advanced drug delivery systems, nanotheranostics and in vivo imaging. Among nanomaterials, zinc oxide nanoparticles (ZnO NPs) were deeply investigated due to their peculiar physical and chemical properties. The large surface to volume ratio, coupled with a reduced size, antimicrobial activity, photocatalytic and semiconducting properties, allowed the use of ZnO NPs as anticancer drugs in new generation physical therapies, nanoantibiotics and osteoinductive agents for bone tissue regeneration. However, ZnO NPs also show a limited stability in biological environments and unpredictable cytotoxic effects thereof. To overcome the abovementioned limitations and further extend the use of ZnO NPs in nanomedicine, doping seems to represent a promising solution. This review covers the main achievements in the use of doped ZnO NPs for nanomedicine applications. Sol-gel, as well as hydrothermal and combustion methods are largely employed to prepare ZnO NPs doped with rare earth and transition metal elements. For both dopant typologies, biomedical applications were demonstrated, such as enhanced antimicrobial activities and contrast imaging properties, along with an improved biocompatibility and stability of the colloidal ZnO NPs in biological media. The obtained results confirm that the doping of ZnO NPs represents a valuable tool to improve the corresponding biomedical properties with respect to the undoped counterpart, and also suggest that a new application of ZnO NPs in nanomedicine can be envisioned.

Journal ArticleDOI
25 Feb 2020-ACS Nano
TL;DR: An intracellular size-transformable nanosystem with multimodlities and efficient tumor penetration has shown potentials in improving anticancer efficacy.
Abstract: Size-transformable nanomedicine has the potential to overcome systemic and local barriers, leading to efficient accumulation and penetration throughout the tumor tissue. However, the design of this type of nanomedicine was seldom based on active targeting and intracellular size transformation. Here, we report an intracellular size-transformable nanosystem, in which small and positively charged nanoparticles (<30 nm) prepared from the self-assembly of an amphiphilic hexadecapeptide derivative was coated by folic acid- and dopamine-decorated hyaluronan (HA) to form large and negatively charged nanoparticles (∼130 nm). This nanosystem has been proven to improve the blood circulation half-life of the drug and prevent premature intravascular drug leakage from the nanocarrier. Once accumulated in the tumor, the nanoparticles were prone to HA- and folic acid-mediated cellular uptake, followed by intracellular size transformation and discharge of transformed small nanoparticles. The size-transformable nanosystem facilitated the transcytosis-mediated tumor penetration and improved the internalization of nanoparticles by cells and the intracellular release of 7-ethyl-10 hydroxycamptothecin. With an indocyanine green derivative as the intrinsic component of the amphiphilic polymer, the nanosystem has exhibited additional theranostic functions: photoacoustic imaging, NIR-laser-induced drug release, and synergistic chemotherapy and phototherapy, leading to a 50% complete cure rate in a subcutaneous B16 melanoma model. This nanosystem with multimodalities and efficient tumor penetration has shown potentials in improving anticancer efficacy.

Journal ArticleDOI
TL;DR: This review attempts to report and analyze the cytotoxicity of the major QDs along with relevant related aspects and suggests that several types of QDs may be suitable for use in biomedical applications if the barrier of cytot toxicity can be resolved.
Abstract: Recently, medical research has been shifting its focus to nanomedicine and nanotherapeutics in the pursuit of drug development research. Quantum dots (QDs) are a critical class of nanomaterials due to their unique properties, which include optical, electronic, and engineered biocompatibility in physiological environments. These properties have made QDs an attractive biomedical resource such that they have found application as both in vitro labeling and in vivo theranostic (therapy-diagnostic) agents. Considerable research has been conducted exploring the suitability of QDs in theranostic applications, but the cytotoxicity of QDs remains an obstacle. Several types of QDs have been investigated over the past decades, which may be suitable for use in biomedical applications if the barrier of cytotoxicity can be resolved. This review attempts to report and analyze the cytotoxicity of the major QDs along with relevant related aspects.

Journal ArticleDOI
TL;DR: The views of the board of the Nanomedicine and Nanoscale Delivery Focus Group of the Controlled Release Society regarding the decision of the United States National Cancer Institute in halting funding for the Centers of Cancer Nanotechnology Excellence (CCNEs) are conveyed.
Abstract: This commentary article conveys the views of the board of the Nanomedicine and Nanoscale Delivery Focus Group of the Controlled Release Society regarding the decision of the United States National Cancer Institute (NCI) in halting funding for the Centers of Cancer Nanotechnology Excellence (CCNEs), and the subsequent editorial articles that broadened this discussion. Graphical abstract.

Journal ArticleDOI
TL;DR: Silver nanoparticles are considered most important due to their unique properties, ability to form diverse nanostructures, their extraordinary range of bactericidal and anticancer properties, wound healing and other therapeutic abilities and their cost-effectiveness in production.
Abstract: Nanotechnology is a rapidly growing field due to its unique functionality and a wide range of applications. Nanomedicine explores the possibilities of applying the knowledge and tools of nanotechnology for the prevention, treatment, diagnosis and control of disease. In this regard, silver nanoparticles with diameters ranging from 1 to 100 nm are considered most important due to their unique properties, ability to form diverse nanostructures, their extraordinary range of bactericidal and anticancer properties, wound healing and other therapeutic abilities and their cost-effectiveness in production. The current paper reviews various types of physical, chemical and biological methods used in the production of silver nanoparticles. It also describes approaches employing silver nanoparticles as antimicrobial and antibiofilm agents, as antitumour agents, in dentistry and dental implants, as promoters of bone healing, in cardiovascular implants and as promoters of wound healing. The paper also explores the mechanism of action, synthesis methods and morphological characterisation of silver nanoparticles to examine their role in medical treatments and disease management.