scispace - formally typeset
Search or ask a question
Topic

Nanomedicine

About: Nanomedicine is a research topic. Over the lifetime, 4287 publications have been published within this topic receiving 200647 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This report paves a new way for the functionalization of MXene-based 2D nanosheets for broadening their novel applications based on the unique surface chemistry of MXenes, especially in theranostic nanomedicine.
Abstract: Fast progress of two-dimensional (2D) materials has catalyzed the emergence of diverse new 2D nanosystems for versatile applications, among which 2D MXenes have attracted broad interest but their single functionality significantly restricts their extensive applications, especially in nanomedicine. Herein we report, for the first time, on the construction of superparamagnetic 2D Ti3C2 MXenes for highly efficient cancer theranostics, which is based on the surface chemistry of specific MXenes for the in situ growth of superparamagnetic Fe3O4 nanocrystals onto the surface of Ti3C2 MXenes. These magnetic Ti3C2-IONPs MXene composites exhibit a high T2 relaxivity of 394.2 mM-1 s-1 and efficient contrast-enhanced magnetic resonance imaging of tumors, providing the potential for therapeutic guidance. Importantly, these superparamagnetic MXenes have shown high photothermal conversion efficiency (48.6%) to guarantee the efficient photothermal killing of cancer cells and ablation of tumor tissues, which has been systematically demonstrated both in vitro and in vivo. The high biocompatibility of these elaborately designed magnetic Ti3C2-based MXene composites guarantees their further potential clinical translation. This report paves a new way for the functionalization of MXene-based 2D nanosheets for broadening their novel applications based on the unique surface chemistry of MXenes, especially in theranostic nanomedicine.

89 citations

Journal ArticleDOI
TL;DR: This review presents a narrative summary on the use of bioconjugated nanoparticles and quantum dots for biological applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

89 citations

Journal ArticleDOI
TL;DR: A bioengineering method for self-assembly of multifunctional superstructures with in-advance programmable properties has been proposed and it has been demonstrated that the bonds between these proteins are strong enough to hold macroscopic particles together.
Abstract: A bioengineering method for self-assembly of multifunctional superstructures with in-advance programmable properties has been proposed. The method employs two unique proteins, barnase and barstar, to rapidly join the structural components together directly in water solutions. The properties of the superstructures can be designed on demand by linking different agents of various sizes and chemical nature, designated for specific goals. As a proof of concept, colloidally stable trifunctional structures have been assembled by binding together magnetic particles, quantum dots, and antibodies using barnase and barstar. The assembly has demonstrated that the bonds between these proteins are strong enough to hold macroscopic (5 nm–3 μm) particles together. Specific interaction of such superstructures with cancer cells resulted in fluorescent labeling of the cells and their responsiveness to magnetic field. The method can be used to join inorganic moieties, organic particles, and single biomolecules for synergistic use in different applications such as biosensors, photonics, and nanomedicine.

89 citations

Journal ArticleDOI
TL;DR: This review of the recent reports in the synthesis of hybrid nanomaterials and their applications in biomedical areas highlights their applications as imaging and therapeutic agents in vivo.
Abstract: Nanotechnology offers outstanding potential for future biomedical applications. In particular, due to their unique characteristics, hybrid nanomaterials have recently been investigated as promising platforms for imaging and therapeutic applications. This class of nanoparticles can not only retain valuable features of both inorganic and organic moieties, but also provides the ability to systematically modify the properties of the hybrid material through the combination of functional elements. Moreover, the conjugation of targeting moieties on the surface of these nanomaterials gives them specific targeted imaging and therapeutic properties. In this review, we summarize the recent reports in the synthesis of hybrid nanomaterials and their applications in biomedical areas. Their applications as imaging and therapeutic agents in vivo will be highlighted.

88 citations

Book
26 Sep 2003
TL;DR: This Volume broadens the definition of nanomedical biocompatibility to include all of the mechanical, physiological, immunological, cytological, and biochemical responses of the human body to the introduction of medical nanodevices, whether “particulate” or “bulk” in form.
Abstract: “Compatibility” most broadly refers to the suitability of two distinct systems or classes of things to be mixed or taken together without unfavorable results. More specifically, the safety, effectiveness, and utility of medical nanorobotic devices will critically depend upon their biocompatibility with human organs, tissues, cells, and biochemical systems. Classical biocompatibility has often focused on the immunological and thrombogenic reactions of the body to foreign substances placed within it. In this Volume, we broaden the definition of nanomedical biocompatibility to include all of the mechanical, physiological, immunological, cytological, and biochemical responses of the human body to the introduction of medical nanodevices, whether “particulate” or “bulk” in form. That is, medical nanodevices may include large doses of independent micron-sized individual nanorobots, or alternatively may include macroscale nanoorgans (nanorobotic organs) assembled either as solid objects or built up from trillions of smaller artificial cells or docked nanorobots inside the body. We also discuss the effects on the nanorobot of being placed inside the human body.

88 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Graphene
144.5K papers, 4.9M citations
82% related
In vivo
61.3K papers, 1.9M citations
81% related
Cell adhesion
29.6K papers, 1.8M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023999
20221,773
2021431
2020402
2019364
2018317