scispace - formally typeset
Search or ask a question
Topic

Nanomedicine

About: Nanomedicine is a research topic. Over the lifetime, 4287 publications have been published within this topic receiving 200647 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Dendritic PGs are presented as functional dendritic architectures with particular focus on their application in nanomedicine, in drug, dye, and gene delivery, as well as in regenerative medicine in the form of non‐fouling surfaces and matrix materials.
Abstract: The application of nanotechnology in medicine and pharmaceuticals is a rapidly advancing field that is quickly gaining acceptance and recognition as an independent area of research called "nanomedicine". Urgent needs in this field, however, are biocompatible and bioactive materials for antifouling surfaces and nanoparticles for drug delivery. Therefore, extensive attention has been given to the design and development of new macromolecular structures. Among the various polymeric architectures, dendritic ("treelike") polymers have experienced an exponential development due to their highly branched, multifunctional, and well-defined structures. This Review describes the diverse syntheses and biomedical applications of dendritic polyglycerols (PGs). These polymers exhibit good chemical stability and inertness under biological conditions and are highly biocompatible. Oligoglycerols and their fatty acid esters are FDA-approved and are already being used in a variety of consumer applications, e.g., cosmetics and toiletries, food industries, cleaning and softening agents, pharmaceuticals, polymers and polymer additives, printing photographing materials, and electronics. Herein, we present the current status of dendritic PGs as functional dendritic architectures with particular focus on their application in nanomedicine, in drug, dye, and gene delivery, as well as in regenerative medicine in the form of non-fouling surfaces and matrix materials.

586 citations

Journal ArticleDOI
TL;DR: This review aims to demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug resistance with the advanced design and alternative mechanisms of drug delivery known for different nanodrugs.

581 citations

Journal ArticleDOI
TL;DR: The significance and recent advances of gene/drug delivery to cancer cells, and the molecular imaging and diagnosis of cancer by targeted functional nanoparticles are reviewed.
Abstract: The diagnosis and treatment of cancer or tumor at the cellular level will be greatly improved with the development of techniques that enable the delivery of analyte probes and therapeutic agents into cells and cellular compartments. Organic and inorganic nanoparticles that interface with biological systems have recently attracted widespread interest in the fields of biology and medicine. The new term nanomedicine has been used recently. Nanoparticles are considered to have the potential as novel intravascular or cellular probes for both diagnostic (imaging) and therapeutic purposes (drug/gene delivery), which is expected to generate innovations and play a critical role in medicine. Target-specific drug/gene delivery and early diagnosis in cancer treatment is one of the priority research areas in which nanomedicine will play a vital role. Some recent breakthroughs in this field recently also proved this trend. Nanoparticles for drug delivery and imaging have gradually been developed as new modalities for cancer therapy and diagnosis. In this article, we review the significance and recent advances of gene/drug delivery to cancer cells, and the molecular imaging and diagnosis of cancer by targeted functional nanoparticles.

568 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner.
Abstract: Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent 'batch-to-batch', and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine.

563 citations

Journal ArticleDOI
TL;DR: The most recent developments in cancer treatment using nanoparticles as drug-delivery vehicles are highlighted, including promising opportunities in targeted and combination therapy.

549 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Graphene
144.5K papers, 4.9M citations
82% related
In vivo
61.3K papers, 1.9M citations
81% related
Cell adhesion
29.6K papers, 1.8M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023999
20221,773
2021431
2020402
2019364
2018317