scispace - formally typeset
Search or ask a question
Topic

Nanomedicine

About: Nanomedicine is a research topic. Over the lifetime, 4287 publications have been published within this topic receiving 200647 citations.


Papers
More filters
Book ChapterDOI
TL;DR: In this article, a method for sample preparation and the determination of mean nanoparticle size (hydrodynamic diameter) using batchmode dynamic light scattering (DLS) in dilute aqueous suspensions is presented.
Abstract: Particle size characterization is of particular importance to nanomedicine. The size similarity of nanoparticles to biological moieties is believed to impart many of their unique medical properties. Here we present a method for sample preparation and the determination of mean nanoparticle size (hydrodynamic diameter) using batch-mode dynamic light scattering (DLS) in dilute aqueous suspensions. We then demonstrate this method for 30 nm colloidal gold.

83 citations

Journal ArticleDOI
TL;DR: The applications of nanotechnology to biological systems that will undoubtedly transform the foundations of disease diagnosis, treatment, and prevention in the future are reviewed and discussed.
Abstract: The notion of nanotechnology has evolved since its inception as a fantastic conceptual idea to its current position as a mainstream research initiative with broad applications among all divisions of science. In the first part of this series, we reviewed the structures and principles that comprise the main body of knowledge of nanoscience and nanotechnology (58). This article reviews and discusses the applications of nanotechnology to biological systems that will undoubtedly transform the foundations of disease diagnosis, treatment, and prevention in the future. Specific attention is given to developments in diagnostics and imaging at the nanoscale level. The use of nanoparticles and nanomaterials as biodetection agents for deoxyribonucleic acid and proteins is presented. In addition, nanodevices, such as nanowires, nanotubes, and nanocantilevers, can be combined with nanoarrays and nanofluidics to create integrated and automated nanodetection platforms. Molecular imaging modalities based on quantum dots and magnetic nanoparticles are also discussed. This technology has been extended to the imaging of intracranial neoplasms. Further innovation within these disciplines will form the basis for the development of mature nanomedicine. The final article of the series will focus on additional advancements in nanomedicine, namely nanotherapy and nanosurgery, and will cover the innovations that will lead to the eventual realization of nanoneurosurgery.

83 citations

Journal ArticleDOI
TL;DR: This paper aims to present the diversity in the definition of nanomedicine and its impact on the translation of basic science research in nanotechnology into clinical applications, and presents the insights obtained from exploratory qualitative interviews with 46 stakeholders involved in translational nanomedICine from Europe and North America.
Abstract: Nanotechnology, which involves manipulation of matter on a 'nano' scale, is considered to be a key enabling technology. Medical applications of nanotechnology (commonly known as nanomedicine) are expected to significantly improve disease diagnostic and therapeutic modalities and subsequently reduce health care costs. However, there is no consensus on the definition of nanotechnology or nanomedicine, and this stems from the underlying debate on defining 'nano'. This paper aims to present the diversity in the definition of nanomedicine and its impact on the translation of basic science research in nanotechnology into clinical applications. We present the insights obtained from exploratory qualitative interviews with 46 stakeholders involved in translational nanomedicine from Europe and North America. The definition of nanomedicine has implications for many aspects of translational research including: fund allocation, patents, drug regulatory review processes and approvals, ethical review processes, clinical trials and public acceptance. Given the interdisciplinary nature of the field and common interest in developing effective clinical applications, it is important to have honest and transparent communication about nanomedicine, its benefits and potential harm. A clear and consistent definition of nanomedicine would significantly facilitate trust among various stakeholders including the general public while minimizing the risk of miscommunication and undue fear of nanotechnology and nanomedicine.

83 citations

Journal ArticleDOI
TL;DR: This review provides an overview of the synthesis and biological applications of hollow magnetic nanoparticles in drug delivery systems and demonstrates great promise as unique carriers in the delivery of chemical drugs due to their combinations of hollow structures.
Abstract: The increasing number of scientific publications focusing on nanomaterials in the biomedical field indicates growing interest from the broader scientific community. Nanomedicine is a modern science, and research continues into the application of nanoscale materials for the therapy and diagnosis of damaged tissues. In this regard, substantial progress has been made in the synthesis of magnetic materials with desired sizes, morphologies, chemical compositions, and surface chemistry. Among these, magnetic iron oxide nanoparticles have demonstrated great promise as unique carriers in the delivery of chemical drugs due to their combinations of hollow structures. Importantly, due to the combination of the ability to respond to an external magnetic field and the rich possibilities of their coatings, magnetic materials are universal tools for the magnetic separation of small molecules, biomolecules, and cells. This review provides an overview of the synthesis and biological applications of hollow magnetic nanoparticles in drug delivery systems.

83 citations

Journal ArticleDOI
TL;DR: It is found that small spherical polystyrene core nanoparticles with a PEG corona have the highest tumor accumulation when compared to the larger spherical nanoparticles or rodlike counterparts or wormlike counterparts.

83 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Graphene
144.5K papers, 4.9M citations
82% related
In vivo
61.3K papers, 1.9M citations
81% related
Cell adhesion
29.6K papers, 1.8M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023999
20221,773
2021431
2020402
2019364
2018317