scispace - formally typeset
Search or ask a question
Topic

Nanomedicine

About: Nanomedicine is a research topic. Over the lifetime, 4287 publications have been published within this topic receiving 200647 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The 89Zr-labeled ultrasmall hybrid organic-inorganic particle is a clinically promising positron emission tomography tracer offering radiobiological properties suitable for enhanced molecularly targeted cancer imaging applications.
Abstract: Designing a nanomaterials platform with high target-to-background ratios has long been one of the major challenges in the field of nanomedicine. Here, we introduce a “target-or-clear” multifunctional nanoparticle platform that demonstrates high tumor-targeting efficiency and retention while minimizing off-target effects. Encouraged by the favorable preclinical and clinical pharmacokinetic profiles derived after fine-tuning surface chemical properties of radioiodinated (124I, t1/2 = 100.2 h) ultrasmall cRGDY-conjugated fluorescent silica nanoparticles (C dots), we sought to investigate how the biological properties of these radioconjugates could be influenced by the conjugation of radiometals such as zirconium-89 (89Zr, t1/2 = 78.4 h) using two different strategies: chelator-free and chelator-based radiolabeling. The attachment of 89Zr to newer, surface-aminated, integrin-targeting C′ dots using a two-pot synthesis approach led to favorable pharmacokinetics and clearance profiles as well as high tumor upta...

57 citations

Journal ArticleDOI
TL;DR: Targeted drug delivery is a system of specifying the drug moiety directly into its targeted body area (organ, cellular, and subcellular level of specific tissue) to overcome the aspecific toxic effect of conventional drug delivery, thereby reducing the amount of drug required for therapeutic efficacy as mentioned in this paper.
Abstract: Nanomedicine is an advanced version of Paul Ehrlich's "magic bullet" concept. Targeted drug delivery is a system of specifying the drug moiety directly into its targeted body area (organ, cellular, and subcellular level of specific tissue) to overcome the aspecific toxic effect of conventional drug delivery, thereby reducing the amount of drug required for therapeutic efficacy. To achieve this objective, the magic bullet concept was developed and pushed scientists to investigate for more than a century, leading to the envisioning of different nanometer-sized devices - today's nanomedicine. Different carrier systems are being used and investigated, which include colloidal (vesicular and multiparticulate) carriers, polymers, and cellular/subcellular systems. This review addresses the need for and advantages of targeting, with its basic principles, strategies, and carrier systems. Recent advances, challenges, and future perspectives are also highlighted.

57 citations

Journal ArticleDOI
TL;DR: Both the fully ELP-based as well as several ELP hybrid materials that have been reported to form nanoparticles will be discussed, followed by a concise description of the promising biomedical applications reported for this class of materials.
Abstract: Elastin-like polypeptides (ELPs) are characterized by a high sequence control, temperature responsiveness and biocompatibility, which make them highly interesting as smart materials for application in nanomedicine. In particular the construction of ELP-based nanoparticles has recently become a focal point of attention in materials research. This review will give an overview of the ELP-based nanoparticles that have been developed until now and their underlying design principles. First a short introduction on ELPs and their stimulus-responsive behavior will be given. This characteristic has been applied for the development of ELP-based block copolymers that can self-assemble into nanoparticles. Both the fully ELP-based as well as several ELP hybrid materials that have been reported to form nanoparticles will be discussed, which is followed by a concise description of the promising biomedical applications reported for this class of materials.

57 citations

Journal ArticleDOI
TL;DR: The findings described are the first to demonstrate the existence of LSPR in non-stoichiometric silicon-based nanoparticles with a low-toxicity degradation pathway for in vivo application, and provide new insights towards understanding the role of new semiconductor nanoparticles in nanomedicine.

57 citations

Journal ArticleDOI
23 Apr 2013-ACS Nano
TL;DR: This Perspective addresses additional design parameters that can potentially facilitate clinical translation as well as how emerging insights into tumor biology will inspire next-generation cancer nanomedicines.
Abstract: With recent advances in cancer nanomedicine, there is an increasing expectation for clinical translation. However, what are the parameters of a nanomedicine that will define clinical success, which will be measured by increased efficacy and not just ease of delivery or reduction in toxicity? In this Perspective, we build on a fundamental study by Stefanick et al. on the significance of the design principles in the engineering of a nanomedicine, such as peptide-PEG-linker length and ligand density in cellular uptake of liposomal nanoparticles. We address additional design parameters that can potentially facilitate clinical translation as well as how emerging insights into tumor biology will inspire next-generation cancer nanomedicines.

57 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Graphene
144.5K papers, 4.9M citations
82% related
In vivo
61.3K papers, 1.9M citations
81% related
Cell adhesion
29.6K papers, 1.8M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023999
20221,773
2021431
2020402
2019364
2018317