scispace - formally typeset
Search or ask a question
Topic

Nanomedicine

About: Nanomedicine is a research topic. Over the lifetime, 4287 publications have been published within this topic receiving 200647 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review will examine various nanomaterials and the use of PPM-DD to optimize the efficacy and safety of current and future cancer treatment and how this platform can accelerate combinatorial nanomedicine and the broader pharmaceutical industry toward unprecedented clinical impact.
Abstract: The implementation of nanomedicine in cellular, preclinical, and clinical studies has led to exciting advances ranging from fundamental to translational, particularly in the field of cancer. Many of the current barriers in cancer treatment are being successfully addressed using nanotechnology-modified compounds. These barriers include drug resistance leading to suboptimal intratumoral retention, poor circulation times resulting in decreased efficacy, and off-target toxicity, among others. The first clinical nanomedicine advances to overcome these issues were based on monotherapy, where small-molecule and nucleic acid delivery demonstrated substantial improvements over unmodified drug administration. Recent preclinical studies have shown that combination nanotherapies, composed of either multiple classes of nanomaterials or a single nanoplatform functionalized with several therapeutic agents, can image and treat tumors with improved efficacy over single-compound delivery. Among the many promising nanomaterials that are being developed, nanodiamonds have received increasing attention because of the unique chemical-mechanical properties on their faceted surfaces. More recently, nanodiamond-based drug delivery has been included in the rational and systematic design of optimal therapeutic combinations using an implicitly de-risked drug development platform technology, termed Phenotypic Personalized Medicine–Drug Development (PPM-DD). The application of PPM-DD to rapidly identify globally optimized drug combinations successfully addressed a pervasive challenge confronting all aspects of drug development, both nano and non-nano. This review will examine various nanomaterials and the use of PPM-DD to optimize the efficacy and safety of current and future cancer treatment. How this platform can accelerate combinatorial nanomedicine and the broader pharmaceutical industry toward unprecedented clinical impact will also be discussed.

177 citations

Journal ArticleDOI
01 Sep 2008-Small
TL;DR: MTT assays reveal that the green gold nanoparticles are nontoxic and thus provide excellent opportunities for their applications in nanomedicine for molecular imaging and therapy.
Abstract: The present study demonstrates an unprecedented green process for the production of gold nanoparticles by simple treatment of gold salts with soybean extracts. Reduction capabilities of antioxidant phytochemicals present in soybean and their ability to reduce gold salts chemically to nanoparticles with subsequent coating of proteins and a host of other phytochemicals present in soybean on the freshly generated gold nanoparticles are discussed. The new genre of green nanoparticles exhibit remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. MTT assays reveal that the green gold nanoparticles are nontoxic and thus provide excellent opportunities for their applications in nanomedicine for molecular imaging and therapy. The overall strategy described herein for the generation of gold nanoparticles meets all 12 principles of green chemistry, as no "man-made" chemicals, other than the gold salts, are used in the green nanotechnological process.

177 citations

Journal ArticleDOI
TL;DR: Results from this study contribute to the fundamental understanding and knowledge on how particle shape affects the transport and targeting efficiency of nanocarriers, which will provide mechanistic insights on the design of shape-specific nanomedicine for targeted drug delivery applications.
Abstract: One of the major challenges in nanomedicine is to improve nanoparticle cell selectivity and adhesion efficiency through designing functionalized nanoparticles of controlled sizes, shapes, and material compositions. Recent data on cylindrically shaped filomicelles are beginning to show that non-spherical particles remarkably improved the biological properties over spherical counterpart. Despite these exciting advances, non-spherical particles have not been widely used in nanomedicine applications due to the lack of fundamental understanding of shape effect on targeting efficiency. This paper intends to investigate the shape-dependent adhesion kinetics of non-spherical nanoparticles through computational modeling. The ligand-receptor binding kinetics is coupled with Brownian dynamics to study the dynamic delivery process of nanorods under various vascular flow conditions. The influences of nanoparticle shape, ligand density, and shear rate on adhesion probability are studied. Nanorods are observed to contact and adhere to the wall much easier than their spherical counterparts under the same configuration due to their tumbling motion. The binding probability of a nanorod under a shear rate of 8 s(-1) is found to be three times higher than that of a nanosphere with the same volume. The particle binding probability decreases with increased flow shear rate and channel height. The Brownian motion is found to largely enhance nanoparticle binding. Results from this study contribute to the fundamental understanding and knowledge on how particle shape affects the transport and targeting efficiency of nanocarriers, which will provide mechanistic insights on the design of shape-specific nanomedicine for targeted drug delivery applications.

177 citations

Journal ArticleDOI
TL;DR: The contribution of dendrimers to the field of nanomedicine is discussed in this article, focusing on the extraordinary possibilities offered by their multivalent and defined structure, as well as the underlying concepts that make Dendrimeric systems so attractive.
Abstract: What is the contribution of dendrimers to the field of nanomedicine? Rather than disclosing an exhaustive catalogue of their possible applications, this review article sets a putative answer by showing the basics and the underlying concepts that make dendrimeric systems so attractive to nanomedicine, emphasizing on the extraordinary possibilities offered by their multivalent and defined structure.

176 citations

Journal ArticleDOI
TL;DR: A curcumin-loaded magnetic nanoparticles (MNP-CUR) formulation was developed in this article to achieve high inherent magnetic properties, effective imaging, drug targeting, and drug delivery properties.
Abstract: Background The next generation magnetic nanoparticles (MNPs) with theranostic applications have attracted significant attention and will greatly improve nanomedicine in cancer therapeutics. Such novel MNP formulations must have ultra-low particle size, high inherent magnetic properties, effective imaging, drug targeting, and drug delivery properties. To achieve these characteristic properties, a curcumin-loaded MNP (MNP-CUR) formulation was developed.

174 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Graphene
144.5K papers, 4.9M citations
82% related
In vivo
61.3K papers, 1.9M citations
81% related
Cell adhesion
29.6K papers, 1.8M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023999
20221,773
2021431
2020402
2019364
2018317