scispace - formally typeset
Search or ask a question
Topic

Nanomedicine

About: Nanomedicine is a research topic. Over the lifetime, 4287 publications have been published within this topic receiving 200647 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals.

160 citations

Journal ArticleDOI
TL;DR: This is the first report on green synthesized anisotropic and cytocompatible gold nanoparticles without any capping agents and their suitability for photothermal therapy.
Abstract: Nanoparticles of varying composition, size, shape, and architecture have been explored for use as photothermal agents in the field of cancer nanomedicine. Among them, gold nanoparticles provide a simple platform for thermal ablation owing to its biocompatibility in vivo. However, the synthesis of such gold nanoparticles exhibiting suitable properties for photothermal activity involves cumbersome routes using toxic chemicals as capping agents, which can cause concerns in vivo. Herein, gold nanoparticles, synthesized using green chemistry routes possessing near-infrared (NIR) absorbance facilitating photothermal therapy, would be a viable alternative. In this study, anisotropic gold nanoparticles were synthesized using an aqueous route with cocoa extract which served both as a reducing and stabilizing agent. The as-prepared gold nanoparticles were subjected to density gradient centrifugation to maximize its NIR absorption in the wavelength range of 800–1000 nm. The particles also showed good biocompatibilit...

159 citations

Journal ArticleDOI
TL;DR: On-demand release of carbon monoxide (CO) is realized through a novel near-infrared-responsive nanomedicine in favor of the enhancement of therapy efficacy and biosafety of CO therapy.
Abstract: On-demand release of carbon monoxide (CO) is realized through a novel near-infrared-responsive nanomedicine in favor of the enhancement of therapy efficacy and biosafety of CO therapy.

158 citations

Journal ArticleDOI
TL;DR: Despite the development of several nanoparticles for biomedical applications, it is believed that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline.
Abstract: Nanotechnology is evolving as a new field that has a potentially high research and clinical impact. Medicine, in particular, could benefit from nanotechnology, due to emerging applications for noninvasive imaging and therapy. One important nanotechnological platform that has shown promise includes the so-called iron oxide nanoparticles. With specific relevance to cancer therapy, iron oxide nanoparticle-based therapy represents an important alternative to conventional chemotherapy, radiation, or surgery. Iron oxide nanoparticles are usually composed of three main components: an iron core, a polymer coating, and functional moieties. The biodegradable iron core can be designed to be superparamagnetic. This is particularly important, if the nanoparticles are to be used as a contrast agent for noninvasive magnetic resonance imaging (MRI). Surrounding the iron core is generally a polymer coating, which not only serves as a protective layer but also is a very important component for transforming nanoparticles into biomedical nanotools for in vivo applications. Finally, different moieties attached to the coating serve as targeting macromolecules, therapeutics payloads, or additional imaging tags. Despite the development of several nanoparticles for biomedical applications, we believe that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline.

158 citations

Journal ArticleDOI
TL;DR: The present review focuses on the recent applications of organic (liposomes, lipid-based nanoparticles, polymeric micelles, and polymeric nanoparticles), and inorganic (silver, silica, magnetic, zinc oxide), cobalt, selenium, and cadmium nanosystems in the domain of antibacterial delivery.
Abstract: Based on the recent reports of World Health Organization, increased antibiotic resistance prevalence among bacteria represents the greatest challenge to human health. In addition, the poor solubility, stability, and side effects that lead to inefficiency of the current antibacterial therapy prompted the researchers to explore new innovative strategies to overcome such resilient microbes. Hence, novel antibiotic delivery systems are in high demand. Nanotechnology has attracted considerable interest due to their favored physicochemical properties, drug targeting efficiency, enhanced uptake, and biodistribution. The present review focuses on the recent applications of organic (liposomes, lipid-based nanoparticles, polymeric micelles, and polymeric nanoparticles), and inorganic (silver, silica, magnetic, zinc oxide (ZnO), cobalt, selenium, and cadmium) nanosystems in the domain of antibacterial delivery. We provide a concise description of the characteristics of each system that render it suitable as an antibacterial delivery agent. We also highlight the recent promising innovations used to overcome antibacterial resistance, including the use of lipid polymer nanoparticles, nonlamellar liquid crystalline nanoparticles, anti-microbial oligonucleotides, smart responsive materials, cationic peptides, and natural compounds. We further discuss the applications of antimicrobial photodynamic therapy, combination drug therapy, nano antibiotic strategy, and phage therapy, and their impact on evading antibacterial resistance. Finally, we report on the formulations that made their way towards clinical application.

158 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Graphene
144.5K papers, 4.9M citations
82% related
In vivo
61.3K papers, 1.9M citations
81% related
Cell adhesion
29.6K papers, 1.8M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023999
20221,773
2021431
2020402
2019364
2018317