scispace - formally typeset
Search or ask a question
Topic

Nanomedicine

About: Nanomedicine is a research topic. Over the lifetime, 4287 publications have been published within this topic receiving 200647 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The applications of nanotechnology in medicine with more emphasis on drug delivery and therapy is discussed in detail, including nanodevices like respirocytes, microbivores and probes encapsulated by biologically localized embedding.
Abstract: Nanotechnology is an emerging branch of science for designing tools and devices of size 1 to 100 nm with unique function at the cellular, atomic and molecular levels. The concept of using nanotechnology in medical research and clinical practice is known as nanomedicine. Nanoparticles possess some novel properties not seen with the macro molecules and they can be manipulated by attaching therapeutic components to help in diagnosis and treatment. They can also be used to probe cellular movements and molecular changes associated with pathological states. Nanodevices like carbon nanotubes to locate and deliver anticancer drugs at the specific tumour site are under research. Nanotechnology promises construction of artificial cells, enzymes and genes. This will help in the replacement therapy of many disorders which are due to deficiency of enzymes, mutation of genes or any repair in the synthesis of proteins. Currently nanodevices like respirocytes, microbivores and probes encapsulated by biologically localized embedding have a greater application in treatment of anaemia and infections. Thus in the present scenario, nanotechnology is spreading its wings to address the key problems in the field of medicine. Hence this review discusses in detail the applications of nanotechnology in medicine with more emphasis on drug delivery and therapy.

142 citations

Journal ArticleDOI
TL;DR: The toxicity associated with the nanoparticles and the advancement of "green" nanomaterials to resolve the toxicity issues are summarized.

142 citations

Journal ArticleDOI
TL;DR: Gold-nanosponge-based multistimuli-responsive drug vehicles are constructed for combined chemo-photothermal therapy with pinpointed drug delivery and release capabilities and minimized nonspecific systemic spread of drugs, remarkably enhancing the therapeutic efficiency while minimizing acute side effects.
Abstract: Gold-nanosponge-based multistimuli-responsive drug vehicles are constructed for combined chemo-photothermal therapy with pinpointed drug delivery and release capabilities and minimized nonspecific systemic spread of drugs, remarkably enhancing the therapeutic efficiency while minimizing acute side effects.

141 citations

Journal ArticleDOI
TL;DR: The synthesis, purification, characterization, and applications of carbon nanodots are described, centered on a bottom-up, microwave-assisted hydrothermal synthesis, using arginine and ethylenediamine as starting materials.
Abstract: Over the past decades, considerable efforts have been devoted to synthesizing nanostructured materials with specific properties that ultimately shape their function. In the carbon nanotechnology era, for nanomaterials such as fullerenes, carbon nanotubes, and graphene, the main focus has been on the organic functionalization of these nanostructures, in order to tailor their processability and applicability. Carbon-based dots, quasi-spherical nanoparticles with a shape under 10 nm, have popped up into this context especially due to their versatile synthesis and intriguing properties, mainly their fluorescence emission. Even though they were discovered through the top-down route of cutting large carbon nanostructures, in recent years the ease and flexibility of the bottom-up synthesis have allowed this carbon-based class of nanomaterials to advance at a striking pace. However, the fast speed of research and publication rate have caused a few issues that affect their classification, purity criteria, and fluorescence mechanisms. As these are being progressively addressed, the true potential and applicability of this nanomaterial has started to unravel. In this Ariticle, we describe our efforts toward the synthesis, purification, characterization, and applications of carbon nanodots. Special attention was dedicated to designing and customizing the optoelectronic properties of these nanomaterials, as well as their applications in hybrid and composite systems. Our approach is centered on a bottom-up, microwave-assisted hydrothermal synthesis. We have successfully exploited a multicomponent synthetic approach, using arginine and ethylenediamine as starting materials. By controlling the reaction conditions, in just 3 min, blue-emitting carbon nanodots become accessible. We have improved this approach by designing and tuning the emissive, electrochemical, and chiroptical properties of these nanoforms. On the other hand, we have used postfunctionalization reactions as a tool for conjugation with suitable partners and for further tuning the surface chemistry. The combination of these two approaches has produced a number of carbon nanodots that can be investigated in fields ranging from biology to materials chemistry and in applications spanning from nanomedicine to energy conversion.

141 citations

Journal ArticleDOI
TL;DR: The proposed approach demonstrates potential for the creation of targeted multifunctional nanomedicine platforms with the ability to deliver therapeutic siRNA specifically to cancer cells in order to prevent severe adverse side effects on healthy tissues and in situ monitoring of the therapeutic outcome using clinically relevant imaging techniques.
Abstract: The ability of Superparamagnetic Iron Oxide (SPIO) nanoparticles and Poly(Propyleneimine) generation 5 dendrimers (PPI G5) to cooperatively provoke siRNA complexation was investigated in order to develop a targeted, multifunctional siRNA delivery system for cancer therapy. Poly(ethylene glycol) (PEG) coating and cancer specific targeting moiety (LHRH peptide) have been incorporated into SPIO-PPI G5-siRNA complexes to enhance serum stability and selective internalization by cancer cells. Such a modification of siRNA nanoparticles enhanced its internalization into cancer cells and increased the efficiency of targeted gene suppression in vitro. Moreover, the developed siRNA delivery system was capable of sufficiently enhancing in vivo antitumor activity of an anticancer drug (Cisplatin). The proposed approach demonstrates potential for the creation of targeted multifunctional nanomedicine platforms with the ability to deliver therapeutic siRNA specifically to cancer cells in order to prevent severe adverse side effects on healthy tissues and in situ monitoring of the therapeutic outcome using clinically relevant imaging techniques.

141 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Graphene
144.5K papers, 4.9M citations
82% related
In vivo
61.3K papers, 1.9M citations
81% related
Cell adhesion
29.6K papers, 1.8M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023999
20221,773
2021431
2020402
2019364
2018317