scispace - formally typeset
Search or ask a question

Showing papers on "Nanoparticle published in 2012"


Journal ArticleDOI
TL;DR: This review presents why PLGA has been chosen to design nanoparticles as drug delivery systems in various biomedical applications such as vaccination, cancer, inflammation and other diseases.

2,753 citations


Journal ArticleDOI
TL;DR: A controlled encapsulation strategy is reported that enables surfactant-capped nanostructured objects of various sizes, shapes and compositions to be enshrouded by a zeolitic imidazolate framework (ZIF-8).
Abstract: Microporous metal–organic frameworks (MOFs) that display permanent porosity show great promise for a myriad of purposes. The potential applications of MOFs can be developed further and extended by encapsulating various functional species (for example, nanoparticles) within the frameworks. However, despite increasing numbers of reports of nanoparticle/MOF composites, simultaneously to control the size, composition, dispersed nature, spatial distribution and confinement of the incorporated nanoparticles within MOF matrices remains a significant challenge. Here, we report a controlled encapsulation strategy that enables surfactant-capped nanostructured objects of various sizes, shapes and compositions to be enshrouded by a zeolitic imidazolate framework (ZIF-8). The incorporated nanoparticles are well dispersed and fully confined within the ZIF-8 crystals. This strategy also allows the controlled incorporation of multiple nanoparticles within each ZIF-8 crystallite. The as-prepared nanoparticle/ZIF-8 composites exhibit active (catalytic, magnetic and optical) properties that derive from the nanoparticles as well as molecular sieving and orientation effects that originate from the framework material.

1,714 citations


Journal ArticleDOI
TL;DR: O'Regan and Gratzel demonstrated that a film of titania nanoparticles deposited on a DSC would act as a mesoporous n-type photoanode and thereby increase the available surface area for dye attachment by a factor of more than a thousand.
Abstract: Dye-sensitized solar cells (DSCs) are attractive because they are made from cheap materials that do not need to be highly purified and can be printed at low cost 1 . DSCs are unique compared with almost all other kinds of solar cells in that electron transport, light absorption and hole transport are each handled by different materials in the cell 2,3 . The sensitizing dye in a DSC is anchored to a wide-bandgap semiconductor such as TiO2, SnO2 or ZnO. When the dye absorbs light, the photoexcited electron rapidly transfers to the conduction band of the semiconductor, which carries the electron to one of the electrodes 4 . A redox couple, usually comprised of iodide/triiodide (I – /I3 – ), then reduces the oxidized dye back to its neutral state and transports the positive charge to the platinized counter-electrode 5 . In 1991, O’Regan and Gratzel demonstrated that a film of titania (TiO2) nanoparticles deposited on a DSC would act as a mesoporous n-type photoanode and thereby increase the available surface area for dye attachment by a factor of more than a thousand 1 . This approach dramatically improved light absorption and brought power-conversion efficiencies into a range that allowed the DSC to be viewed as a serious competitor to other solar cell technologies 6 . A schematic and energy level diagram showing the operation of a typical DSC is shown in Fig. 1. During the 1990s and the early 2000s, researchers found that organometallic complexes based on ruthenium provided the highest power-conversion efficiencies 7,8

1,215 citations


Journal ArticleDOI
TL;DR: The density of midgap trap states in CQD solids is quantified and shown to be limited by electron-hole recombination due to these states, and a robust hybrid passivation scheme is developed that can passivate trap sites that are inaccessible to much larger organic ligands.
Abstract: Improved performance in a photovoltaic device made of colloidal quantum dots is achieved through a combination of passivation by halide anions and organic crosslinking.

1,183 citations


Posted Content
TL;DR: In this paper, a manganese-cobalt spinel MnCo2O4/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions.
Abstract: Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co3O4 nanoparticles, a manganese-cobalt spinel MnCo2O4/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrid results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets. Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C-O and C-N bonding in the N-rmGO sheet, suggesting the formation of C-O-metal and C-N-metal bonds between N-doped graphene oxide and spinel oxide nanoparticles. Co L-edge and Mn L-edge XANES suggested substitu-tion of Co3+ sites by Mn3+, which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared to the pure cobalt oxide hybrid. The covalently bonded hybrid afforded much greater activity and durability than the physi-cal mixture of nanoparticles and carbon materials including N-rmGO. At the same mass loading, the MnCo2O4/N-graphene hybrid can outperform Pt/C in ORR current density at medium overpotentials with superior stability to Pt/C in alkaline solutions.

1,105 citations


Journal ArticleDOI
22 Mar 2012-Nature
TL;DR: This work investigates the plasmon resonances of individual ligand-free silver nanoparticles using aberration-corrected transmission electron microscope imaging and monochromated scanning TEM electron energy-loss spectroscopy, and presents an analytical quantum mechanical model that describes this shift due to a change in particle permittivity.
Abstract: The plasmon resonances of metallic nanoparticles have received considerable attention for their applications in nanophotonics, biology, sensing, spectroscopy and solar energy harvesting. Although thoroughly characterized for spheres larger than ten nanometres in diameter, the plasmonic properties of particles in the quantum size regime have been historically difficult to describe owing to weak optical scattering, metal-ligand interactions, and inhomogeneity in ensemble measurements. Such difficulties have precluded probing and controlling the plasmonic properties of quantum-sized particles in many natural and engineered processes, notably catalysis. Here we investigate the plasmon resonances of individual ligand-free silver nanoparticles using aberration-corrected transmission electron microscope (TEM) imaging and monochromated scanning TEM electron energy-loss spectroscopy (EELS). This technique allows direct correlation between a particle's geometry and its plasmon resonance. As the nanoparticle diameter decreases from 20 nanometres to less than two nanometres, the plasmon resonance shifts to higher energy by 0.5 electronvolts, a substantial deviation from classical predictions. We present an analytical quantum mechanical model that describes this shift due to a change in particle permittivity. Our results highlight the quantum plasmonic properties of small metallic nanospheres, with direct application to understanding and exploiting catalytically active and biologically relevant nanoparticles.

1,075 citations


Journal ArticleDOI
TL;DR: This work reports the synthesis of unique nanoscale spherical OMCs with extremely high bimodal porosities, investigated as a cathode material and sulfur host in Li–S batteries where they showed high initial discharge capacity and good cyclability without sacrificing rate capability.
Abstract: Rechargeable lithium–sulfur (Li–S) batteries are attracting increasing attention due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li-ion batteries based on intercalation chemistry. Since the electronic conductivity of sulfur is extremely low, conductive carbon materials with high accessible porosity to “wire” and contain the sulfur are an essential component of the positive electrode. During the past decades, attempts have been made to fabricate C/S composites using carbon black, activated carbons (ACs), and carbon nanotubes (CNTs). Although improvements resulted, the cathodes suffered from inhomogeneous contact between the active material and the electronic conductors. A major step forward in fabricating a uniform C/S composite was reported in 2009. Some of us employed CMK-3, an ordered mesoporous carbon (OMC) featuring high specific surface area and large pore volume as a scaffold. As much as 70 wt% sulfur was incorporated into the uniform 3–4 nm mesopores, and the cells exhibited reversible capacities up to 1350 mAhg , albeit at moderate rates. Inspired by this, another OMC, a bulk bimodal mesoporous carbon (BMC-1) was investigated as a Li-S cathode. The favorable pore dimensions and large pore volume greatly improved the rate performance. An electrode with 40 wt% S showed a high initial discharge capacity of 1135 mAhg 1 at a current rate of 1 C (defined as discharge/ charge in one hour). However, similar to other reports, the capacity is sensitive to the sulfur ratio, dropping to 718 mAhg 1 at a sulfur content of 60 wt%. These results suggest that the texture of the mesoporous carbon could be further enhanced. Recently, Archer et al. reported nanoscale hollow porous C/S spheres prepared through vapor infusion. These materials displayed good cyclability and capacity at a C/5 rate, illustrating the advantages of nanosized porous carbon in the sulfur cathodes. Here we report the synthesis of unique nanoscale spherical OMCs with extremely high bimodal porosities. The particles were investigated as a cathode material and sulfur host in Li–S batteries where they showed high initial discharge capacity and good cyclability without sacrificing rate capability. Unlike bulk porous carbons, these carbon– sulfur sphere electrodes did not display significant capacity fading with the increase of sulfur content in the cathodes. We show that the nanoscale morphology of these materials is of key importance for ensuring very efficient use of the sulfur content even at high cycling rates. Morphology control is a central issue in OMC synthesis. There are numerous examples of mesoporous bulk materials obtained either by hard-templating or soft-templating, including thin films, membranes or free fibers. Most syntheses use evaporation-induced self-assembly (EISA) followed by thermal treatment for template-removal and carbonization. It is a challenge to either create solution-based OMC nanoparticle syntheses or to adapt the established EISA methods to nanoparticles. Only few examples of OMC nanoparticles have been reported so far which are mostly unsuitable for applications in Li–S cells due to low pore volume and/or surface area. Approaches include templating with PMMA colloidal crystals or mesoporous silica nanoparticles, aerosol-assisted synthesis, ultrasonic emulsification or hydrothermal synthesis. Ordered arrays of fused mesoporous carbon spheres were reported by Liu et al. using a macroporous silica as template. Recently Lei et al. reported the synthesis of 65 nm mesoporous carbon nanospheres, with both 2.7 nm mesopores and high textural porosity (surface area of 2400 mg ). These showed promising supercapacitor properties. Our spherical OMC nanoparticles of 300 nm in diameter, prepared by a novel method, can be dispersed in water by sonification to form stable colloidal suspensions. The spherical mesoporous carbon nanoparticles were obtained in a twostep casting process. An opal structure of PMMA spheres was cast with a silica precursor solution to form a silica inverse opal. The inverse opal was then used as template for a triconstituent precursor solution containing resol as the carbon precursor, tetraethylorthosilicate (TEOS) as the silica precursor and the block copolymer Pluronic F127 as a structure-directing agent. Carbonization was followed by etching of the silica template and the silica in the carbon/silica nanocomposite, resulting in the formation of OMC with hierarchical porosity. Through the presence of silica in the [*] J. Schuster, B. Mandlmeier, Prof. Dr. T. Bein Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstrasse 5–13 (Gerhard Ertl Building), 81377 Munich (Germany) E-mail: tbein@cup.uni-muenchen.de Homepage: http://bein.cup.uni-muenchen.de G. He, T. Yim, K. T. Lee, Prof. Dr. L. F. Nazar Department of Chemistry, University of Waterloo 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada) E-mail: lfnazar@uwaterloo.ca [] These authors contributed equally to this work.

1,045 citations


Journal ArticleDOI
27 Feb 2012-Sensors
TL;DR: The gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article and the effect of doping is summarized and the perspectives ofMetal oxide gas sensor are given.
Abstract: Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion Besides, doping is also an effective method to decrease particle size and improve gas sensing properties Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given

915 citations


Journal ArticleDOI
TL;DR: Graphene-TiO(2) nanoparticles possess excellent photocatalytic properties under visible light for the degradation of methylene blue and a red-shift of the band-edge and a significant reduction of theBandgap.
Abstract: Highly photoactive, graphene-wrapped anatase TiO(2) nanoparticles are synthesized through one-step hydrothermal reduction of graphene oxide (GO) and TiO(2) crystallization from GO-wrapped amorphous TiO(2) NPs. Graphene-TiO(2) nanoparticles exhibit a red-shift of the band-edge and a significant reduction of the bandgap (2.80 eV). Graphene-TiO(2) nanoparticles possess excellent photocatalytic properties under visible light for the degradation of methylene blue.

863 citations


Journal ArticleDOI
TL;DR: In this paper, the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nanocomposites, generally by sol-gel technique are discussed.
Abstract: Application of silica nanoparticles as fillers in the preparation of nanocomposite of polymers has drawnmuch attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nanocomposites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nanocomposites, generally by sol-gel technique. The effect of nanosilica on the properties of various types of silica-polymer composites is also summarized.

840 citations


Journal ArticleDOI
TL;DR: How MRI contrast effects can be improved by controlling the size, composition, doping, assembly, and surface properties of iron-oxide-based nanoparticles is discussed.
Abstract: Various magnetic nanoparticles have been extensively investigated as novel magnetic resonance imaging (MRI) contrast agents owing to their unique characteristics, including efficient contrast effects, biocompatibility, and versatile surface functionalization capability. Nanoparticles with high relaxivity are very desirable because they would increase the accuracy of MRI. Recent progress in nanotechnology enables fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. In this tutorial review, we discuss how MRI contrast effects can be improved by controlling the size, composition, doping, assembly, and surface properties of iron-oxide-based nanoparticles.

Journal ArticleDOI
TL;DR: Highly bright and efficient inverted structure quantum dot (QD) based light-emitting diodes (QLEDs) by using solution-processed ZnO nanoparticles as the electron injection/transport layer and by optimizing energy levels with the organic hole transport layer are reported.
Abstract: We report highly bright and efficient inverted structure quantum dot (QD) based light-emitting diodes (QLEDs) by using solution-processed ZnO nanoparticles as the electron injection/transport layer and by optimizing energy levels with the organic hole transport layer. We have successfully demonstrated highly bright red, green, and blue QLEDs showing maximum luminances up to 23,040, 218,800, and 2250 cd/m(2), and external quantum efficiencies of 7.3, 5.8, and 1.7%, respectively. It is also noticeable that they showed turn-on voltages as low as the bandgap energy of each QD and long operational lifetime, mainly attributed to the direct exciton recombination within QDs through the inverted device structure. These results signify a remarkable progress in QLEDs and offer a practicable platform for the realization of QD-based full-color displays and lightings.

Journal ArticleDOI
TL;DR: Gold nanoclusters have discrete electronic energy levels as opposed to the continuous band in plasmonic nanoparticles, and show multiple optical absorption peaks in the optical spectrum versus a single surface plAsmon resonance (SPR) peak at 520 nm for spherical gold nanocrystals.
Abstract: Gold nanoparticles typically have a metallic core, and the electronic conduction band consists of quasicontinuous energy levels (i.e. spacing δ ≪ kBT, where kBT is the thermal energy at temperature T (typically room temperature) and kB is the Boltzmann constant). Electrons in the conduction band roam throughout the metal core, and light can collectively excite these electrons to give rise to plasmonic responses. This plasmon resonance accounts for the beautiful ruby-red color of colloidal gold first observed by Faraday back in 1857.On the other hand, when gold nanoparticles become extremely small (<2 nm in diameter), significant quantization occurs to the conduction band. These quantum-sized nanoparticles constitute a new class of nanomaterial and have received much attention in recent years. To differentiate quantum-sized nanoparticles from conventional plasmonic gold nanoparticles, researchers often refer to the ultrasmall nanoparticles as nanoclusters.In this Account, we chose several typical sizes of ...

Journal ArticleDOI
TL;DR: In this paper, a novel method based on ionic gelation using sodium tripolyphosphate (TPP) as cross-linking agent was used to obtain monodisperse, low molecular weight (LMW) chitosan nanoparticles.

Journal ArticleDOI
TL;DR: Advances in tailoring nanoparticle interfaces for implementation in nanomedicine will be emphasized.
Abstract: Control of interactions between nanoparticles and biosystems is essential for the effective utilization of these materials in biomedicine. A wide variety of nanoparticle surface structures have been developed for imaging, sensing, and delivery applications. In this research Highlight, we will emphasize advances in tailoring nanoparticle interfaces for implementation in nanomedicine.

Journal ArticleDOI
TL;DR: It is demonstrated that metallic phases of WO(3-δ) nanoparticles exhibit a strong and tunable localized surface plasmon resonance, which opens up the possibility of rationally designing plasMonic tungsten oxide nanoparticles for light harvesting, bioimaging, and sensing.
Abstract: Transition-metal oxide nanocrystals are interesting candidates for localized surface plasmon resonance hosts because they exhibit fascinating properties arising from the unique character of their outer-d valence electrons. WO3−δ nanoparticles are known to have intense visible and near-IR absorption, but the origin of the optical absorption has remained unclear. Here we demonstrate that metallic phases of WO3−δ nanoparticles exhibit a strong and tunable localized surface plasmon resonance, which opens up the possibility of rationally designing plasmonic tungsten oxide nanoparticles for light harvesting, bioimaging, and sensing.

Journal ArticleDOI
25 May 2012-Science
TL;DR: In this paper, real-time transmission electron microscopy (TEM) imaging of the solution growth of Pt(3)Fe nanorods from nanoparticle building blocks is reported.
Abstract: The growth of colloidal nanocrystal architectures by nanoparticle attachment is frequently reported as an alternative to the conventional growth by monomer attachment. However, the mechanism whereby nanoparticle attachment proceeds microscopically remains unclear. We report real-time transmission electron microscopy (TEM) imaging of the solution growth of Pt(3)Fe nanorods from nanoparticle building blocks. Observations revealed growth of winding polycrystalline nanoparticle chains by shape-directed nanoparticle attachment followed by straightening and orientation and shape corrections to yield single-crystal nanorods. Tracking nanoparticle growth trajectories allowed us to distinguish the force fields exerted by single nanoparticles and nanoparticle chains. Such quantification of nanoparticle interaction and understanding the growth pathways are important for the design of hierarchical nanomaterials and controlling nanocrystal self-assembly for functional devices.

Journal ArticleDOI
TL;DR: In this paper, the authors synthesized ZIF-8 nanoparticles (size ∼ 60 nm and specific surface area ∼ 1300-1600 m2 g−1) were directly incorporated into a model polymer matrix (Matrimid® 5218) by solution mixing.
Abstract: As synthesised ZIF-8 nanoparticles (size ∼ 60 nm and specific surface area ∼ 1300–1600 m2 g−1) were directly incorporated into a model polymer matrix (Matrimid® 5218) by solution mixing. This produces flexible transparent membranes with excellent dispersion of nanoparticles (up to loadings of 30 wt%) with good adhesion within the polymer matrix, as confirmed by scanning electron microscopy, dynamic mechanical thermal analysis and gas sorption studies. Pure gas (H2, CO2, O2, N2 and CH4) permeation tests showed enhanced permeability of the mixed matrix membrane with negligible losses in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that an increase in the free volume of the polymer with ZIF-8 loading together with the free diffusion of gas through the cages of ZIF-8 contributed to an increase in gas permeability of the composite membrane. The gas transport properties of the composite membranes were well predicted by a Maxwell model whilst the processing strategy reported can be extended to fabricate other polymer nanocomposite membranes intended for a wide range of emerging energy applications.

Journal ArticleDOI
TL;DR: The wavelength range of 650-1450 nm falls in the region of the spectrum with the lowest absorption in tissue and therefore enables the deepest tissue penetration and is the wavelength range focused on with this review.
Abstract: The importance of long wavelength and near-infrared (NIR) imaging has dramatically increased due to the desire to perform whole animal and deep tissue imaging. The adoption of NIR imaging is also growing rapidly due to the availability of targeted biological agents for diagnosis and basic medical research that can be imaged in vivo. The wavelength range of 650–1450 nm falls in the region of the spectrum with the lowest absorption in tissue and therefore enables the deepest tissue penetration. This is the wavelength range we focus on with this review. To operate effectively, the imaging agents must both be excited and must emit in this long-wavelength window. We review the agents used for imaging by absorption, scattering, and excitation (such as fluorescence). Imaging agents comprise both aqueous soluble and insoluble species, both organic and inorganic, and unimolecular and supramolecular constructs. The interest in multimodal imaging, which involves delivery of actives, targeting, and imaging, requires ...

Journal Article
TL;DR: It was found that the particle size distribution of the nanoparticles could be significantly narrowed by a combination of decreasing the concentration of acetic acid and reducing the ambient temperature during cross-linking process.

Journal ArticleDOI
TL;DR: It is shown that the density of silver coverage can be controlled by the amount and type of halide present in solution, and a set of design considerations for controlling the growth and final shape of gold nanoparticles prepared by seed-mediated syntheses is proposed.
Abstract: The roles of silver ions and halides (chloride, bromide, and iodide) in the seed-mediated synthesis of gold nanostructures have been investigated, and their influence on the growth of 10 classes of nanoparticles that differ in shape has been determined. We systematically studied the effects that each chemical component has on the particle shape, on the rate of particle formation, and on the chemical composition of the particle surface. We demonstrate that halides can be used to (1) adjust the reduction potential of the gold ion species in solution and (2) passivate the gold nanoparticle surface, both of which control the reaction kinetics and thus enable the selective synthesis of a series of different particle shapes. We also show that silver ions can be used as an underpotential deposition agent to access a different set of particle shapes by controlling growth of the resulting gold nanoparticles through surface passivation (more so than kinetic effects). Importantly, we show that the density of silver ...

Journal ArticleDOI
18 May 2012-ACS Nano
TL;DR: A novel composite material based on commercially available polyurethane foams functionalized with colloidal superparamagnetic iron oxide nanoparticles and submicrometer polytetrafluoroethylene particles, which can efficiently separate oil from water.
Abstract: In this study, we present a novel composite material based on commercially available polyurethane foams functionalized with colloidal superparamagnetic iron oxide nanoparticles and submicrometer polytetrafluoroethylene particles, which can efficiently separate oil from water. Untreated foam surfaces are inherently hydrophobic and oleophobic, but they can be rendered water-repellent and oil-absorbing by a solvent-free, electrostatic polytetrafluoroethylene particle deposition technique. It was found that combined functionalization of the polytetrafluoroethylene-treated foam surfaces with colloidal iron oxide nanoparticles significantly increases the speed of oil absorption. Detailed microscopic and wettability studies reveal that the combined effects of the surface morphology and of the chemistry of the functionalized foams greatly affect the oil-absorption dynamics. In particular, nanoparticle capping molecules are found to play a major role in this mechanism. In addition to the water-repellent and oil-ab...

Journal ArticleDOI
TL;DR: A general synthetic strategy for yolk-shell nanocrystal@ZIF-8 nanostructures has been developed and the results show high activity for the ethylene and cyclohexene hydrogenations but not in the cyclooctene hydrogenation.
Abstract: A general synthetic strategy for yolk–shell nanocrystal@ZIF-8 nanostructures has been developed. The yolk–shell nanostructures possess the functions of nanoparticle cores, microporous shells, and a cavity in between, which offer great potential in heterogeneous catalysis. The synthetic strategy involved first coating the nanocrystal cores with a layer of Cu2O as the sacrificial template and then a layer of polycrystalline ZIF-8. The clean Cu2O surface assists in the formation of the ZIF-8 coating layer and is etched off spontaneously and simultaneously during this process. The yolk–shell nanostructures were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and nitrogen adsorption. To study the catalytic behavior, hydrogenations of ethylene, cyclohexene, and cyclooctene as model reactions were carried out over the Pd@ZIF-8 catalysts. The microporous ZIF-8 shell provides excellent molecular-size selectivity. The results show high activity for the ethylene an...

Journal ArticleDOI
TL;DR: In this article, the authors highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner.
Abstract: Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent 'batch-to-batch', and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine.

Journal ArticleDOI
TL;DR: Cubic monodisperse MFe2O4 ferrite nanoparticles with tunable sizes between 7 and 20nm and a narrow size distribution have been achieved in a one step synthesis by thermal decomposition of Fe(III), Co (II), and Mn(II) oleates.
Abstract: Cubic monodisperse MFe2O4 ferrite nanoparticles (M = Fe, Co, and Mn) with tunable sizes between 7 and 20 nm and a narrow size distribution have been achieved in a one step synthesis by thermal decomposition of Fe(III), Co (II), and Mn(II) oleates. These nanoparticles have been functionalized with dimercaptosuccinic acid (DMSA), 11-mercaptoundecanoic acid (MUA), and bis(carboxymethyl)(2-maleimidylethyl)ammonium 4-toluenesulfonate (MATS) to grant them aqueous stability and the possibility for further functionalization with different biomolecules. Their structural, magnetic, and colloidal properties have also been studied to determine their chemical and physical properties and the degree of stability under physiological conditions that will determine their future use in biomedical applications.

Journal ArticleDOI
TL;DR: It is shown that time-resolved tip-enhanced Raman spectroscopy can monitor photocatalytic reactions at the nanoscale and can be used to observe other molecular effects such as monolayer diffusion.
Abstract: Heterogeneous catalysts play a pivotal role in the chemical industry, but acquiring molecular insights into functioning catalysts remains a significant challenge. Recent advances in micro-spectroscopic approaches have allowed spatiotemporal information to be obtained on the dynamics of single active sites and the diffusion of single molecules. However, these methods lack nanometre-scale spatial resolution and/or require the use of fluorescent labels. Here, we show that time-resolved tip-enhanced Raman spectroscopy can monitor photocatalytic reactions at the nanoscale. We use a silver-coated atomic force microscope tip to both enhance the Raman signal and to act as the catalyst. The tip is placed in contact with a self-assembled monolayer of p-nitrothiophenol molecules adsorbed on gold nanoplates. A photocatalytic reduction process is induced at the apex of the tip with green laser light, while red laser light is used to monitor the transformation process during the reaction. This dual-wavelength approach can also be used to observe other molecular effects such as monolayer diffusion.

Journal ArticleDOI
TL;DR: In this paper, high-resolution XRD measurements confirm the lattice contraction for the nanoparticles and show that hydroxylation upon prolonged exposure to the ambient causes a noticeable change in the Ni 2p peak shape that could be misinterpreted as an artifact of particle size.
Abstract: NiO has been analyzed by X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) analysis, and X-ray photoelectron spectroscopy (XPS) for bulk-scale and nanosized polycrystalline samples. XAFS indicates that the 5- and 25-nm NiO materials show bulk-like structural properties, with the exception of a lattice contraction, relative to the bulk material, and exhibit the anticipated decrease in average coordination numbers typically observed for nanoparticle systems. Carefully calibrated high-resolution XRD measurements confirm the lattice contraction for the nanoparticles. XPS also indicates the surface of NiO is comparable across the size scale for both binding energies and characteristic Ni 2p satellite structure. Detailed examination of the Ni 2p and O 1s regions reveals that hydroxylation upon prolonged exposure to the ambient causes a noticeable change in the Ni 2p peak shape that could be misinterpreted as an artifact of particle size.

Journal ArticleDOI
TL;DR: This review summarized the strategies used to create luminescent gold nanoparticles with sizes from few to millions of atoms and discussed how structural factors affect their photoluminescence.
Abstract: After a decade's efforts, a large amount of highly luminescent metal nanoparticles with different sizes and surface chemistries have been developed. While the luminescence is often attributed to particle size effects, other structural parameters such as surface ligands, valence states of metal atoms and crystallinity of nanoparticles also have a significant influence on emission properties and mechanisms. In this review, we summarized the strategies used to create luminescent gold nanoparticles with sizes from few to millions of atoms and discussed how these structural factors affect their photoluminescence.

Journal ArticleDOI
TL;DR: A facile wet-chemical route for the synthesis of Hägg iron carbide nanoparticles, in which bromide was found to be the key inducing agent for the conversion of Fe(CO)(5) to Fe(5)C(2) in the synthetic process, showing enhanced catalytic performance in terms of CO conversion and product selectivity.
Abstract: Iron carbide nanoparticles have long been considered to have great potential in new energy conversion, nanomagnets, and nanomedicines. However, the conventional relatively harsh synthetic conditions of iron carbide hindered its wide applications. In this article, we present a facile wet-chemical route for the synthesis of Hagg iron carbide (Fe5C2) nanoparticles, in which bromide was found to be the key inducing agent for the conversion of Fe(CO)5 to Fe5C2 in the synthetic process. Furthermore, the as-synthesized Fe5C2 nanoparticles were applied in the Fischer–Tropsch synthesis (FTS) and exhibited intrinsic catalytic activity in FTS, demonstrating that Fe5C2 is an active phase for FTS. Compared with a conventional reduced-hematite catalyst, the Fe5C2 nanoparticles showed enhanced catalytic performance in terms of CO conversion and product selectivity.

Journal ArticleDOI
TL;DR: In this paper, a review describes developments in the formation and properties of food-grade emulsion systems based on traditional edible dispersed particles (fat crystals), commercial nanoparticles (silica nanoparticles), and novel particles of biological origin (starch microparticles, chitin nanocrystals).
Abstract: Solid particles of nanoscale and microscale dimensions are becoming recognized for their potential application in the formulation of novel dispersed systems containing emulsified oil or water droplets. This review describes developments in the formation and properties of food-grade emulsion systems based on traditional edible dispersed particles (fat crystals), commercial nanoparticles (silica nanoparticles), and novel particles of biological origin (starch microparticles, chitin nanocrystals). The special features characterizing the properties of particle-stabilized droplets are highlighted in comparison with those of conventional protein-stabilized emulsions. Complexities arising from synergistic interactions of particles with other surface-active ingredients are discussed.