scispace - formally typeset
Search or ask a question

Showing papers on "Nanoparticle published in 2022"


Journal ArticleDOI
TL;DR: In this article, ZnO NPs were synthesized from Synadium grantii leaf extricate with varying Cu-dopant concentrations, and the photocatalytic studies of the prepared samples were studied using Methylene blue (MB), Indigo Carmine (IC), and Rhodamine B (RhB) organic pollutants.

175 citations



Journal ArticleDOI
TL;DR: In this paper , ZnO NPs were synthesized from Synadium grantii leaf extricate with varying Cu-dopant concentrations, and the photocatalytic studies of the prepared samples were studied using Methylene blue (MB), Indigo Carmine (IC), and Rhodamine B (RhB) organic pollutants.

170 citations


Journal ArticleDOI
TL;DR: In this paper , a core-shell BTO/CdS heterojunction photocatalyst was constructed by coating CdS nanoparticles onto the surface of BTO hierarchical microspheres.

155 citations


Journal ArticleDOI
TL;DR: In this article, a core-shell BTO/CdS heterojunction photocatalyst was constructed by assembling CdS nanoparticles onto the surface of Bi4Ti3O1 (BTO) hierarchical microspheres.

155 citations


Journal ArticleDOI
TL;DR: In this paper , the performance of c-Si/ZnO heterojunction ultrathin-film solar cells (SCs) is enhanced by an integrated structure of C-Si trapezoidal pyramids on the top of a cSi active layer and Al pyramids in the active layer on the Al back electrode.
Abstract: In this work, we demonstrate that the performance of c-Si/ZnO heterojunction ultrathin-film solar cells (SCs) is enhanced by an integrated structure of c-Si trapezoidal pyramids on the top of a c-Si active layer and Al pyramids in the active layer on the Al back electrode. The top c-Si trapezoidal pyramid (TTP) increases the absorption of short wavelengths by lengthening the propagation distance of incident light and coupling the incident light into photonic modes in the active layer. The bottom Al pyramid (BP) improves the overall optical absorption performance especially for the long wavelength band by forming the surface plasmon resonance (SPR) mode in the active layer. As a result, the average absorption in the entire wavelength range (300-1400 nm) reaches 93.16%. The optimized short-circuit current density (Jsc) and photoelectric conversion efficiency (PCE) of ultra-thin film c-Si/ZnO SCs are 41.94 mA cm-2 and 18.97%, respectively. Moreover, the effect of different illumination angles on the optical absorption of the SCs was explored. The SCs have good absorption when the incident angles are in the range from 0 degrees to 60 degrees. Furthermore, the underlying mechanism for the enhancement of photon absorption in the SCs was discussed through careful analysis of the electric field intensity profile at different wavelengths. It was found that the electric field tends to concentrate around the bottom pyramids and top trapezoidal pyramids even for the long-wave band, which results in an excellent light-trapping performance.

155 citations


Journal ArticleDOI
TL;DR: Left-handed nanoparticles show substantially higher efficiency compared with their right-handed counterparts as adjuvants for vaccination against the H9N2 influenza virus, opening a path to the use of nanoscale chirality in immunology.

149 citations



Journal ArticleDOI
TL;DR: In this paper , the authors proposed the combination of thermal storage and solar concentrating systems to improve the low conduction mode of pure paraffin, not only the new style of fins but also dispersing ZnO nano-powders were suggested.

119 citations


Journal ArticleDOI
TL;DR: In this paper , a series of Ru nanocrystals from single atoms, subnanometric clusters to larger nanoparticles was synthesized, aiming at investigating the size-dependent activity of hydrogen evolution in alkaline media.
Abstract: Subnanometric metal clusters usually have unique electronic structures and may display electrocatalytic performance distinctive from single atoms (SAs) and larger nanoparticles (NPs). However, the electrocatalytic performance of clusters, especially the size-activity relationship at the sub-nanoscale, is largely unexplored. Here, we synthesize a series of Ru nanocrystals from single atoms, subnanometric clusters to larger nanoparticles, aiming at investigating the size-dependent activity of hydrogen evolution in alkaline media. It is found that the d band center of Ru downshifts in a nearly linear relationship with the increase of diameter, and the subnanometric Ru clusters with d band center closer to Femi level display a stronger water dissociation ability and thus superior hydrogen evolution activity than SAs and larger nanoparticles. Benefiting from the high metal utilization and strong water dissociation ability, the Ru clusters manifest an ultrahigh turnover frequency of 43.3 s-1 at the overpotential of 100 mV, 36.1-fold larger than the commercial Pt/C.

117 citations


Journal ArticleDOI
08 Apr 2022-Science
TL;DR: High-entropy nanoparticles have become a rapidly growing area of research in recent years as discussed by the authors , and they can be used for catalysis, energy, and sustainability applications, however, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding.
Abstract: High-entropy nanoparticles have become a rapidly growing area of research in recent years. Because of their multielemental compositions and unique high-entropy mixing states (i.e., solid-solution) that can lead to tunable activity and enhanced stability, these nanoparticles have received notable attention for catalyst design and exploration. However, this strong potential is also accompanied by grand challenges originating from their vast compositional space and complex atomic structure, which hinder comprehensive exploration and fundamental understanding. Through a multidisciplinary view of synthesis, characterization, catalytic applications, high-throughput screening, and data-driven materials discovery, this review is dedicated to discussing the important progress of high-entropy nanoparticles and unveiling the critical needs for their future development for catalysis, energy, and sustainability applications. Description BACKGROUND High-entropy nanoparticles contain more than four elements uniformly mixed into a solid-solution structure, offering opportunities for materials discovery, property optimization, and advanced applications. For example, the compositional flexibility of high-entropy nanoparticles enables fine-tuning of the catalytic activity and selectivity, and high-entropy mixing offers structural stability under harsh operating conditions. In addition, the multielemental synergy in high-entropy nanoparticles provides a diverse range of adsorption sites, which is ideal for multistep tandem reactions or reactions that require multifunctional catalysts. However, the wide range of possible compositions and complex atomic arrangements also create grand challenges in synthesizing, characterizing, understanding, and applying high-entropy nanoparticles. For example, controllable synthesis is challenging given the different physicochemical properties within the multielemental compositions combined with the small size and large surface area. Moreover, random multielemental mixing can make it difficult to precisely characterize the individual nanoparticles and their statistical variations. Without rational understanding and guidance, efficient compositional design and performance optimization within the huge multielemental space is nearly impossible. ADVANCES The comprehensive study of high-entropy nanoparticles has become feasible because of the rapid development of synthetic approaches, high-resolution characterization, high-throughput experimentation, and data-driven discovery. A diverse range of compositions and material libraries have been developed, many by using nonequilibrium “shock”–based methods designed to induce single-phase mixing even for traditionally immiscible elemental combinations. The nanomaterial types have also rapidly evolved from crystalline metallic alloys to metallic glasses, oxides, sulfides, phosphates, and others. Advanced characterization tools have been used to uncover the structural complexities of high-entropy nanoparticles. For example, atomic electron tomography has been used for single-atom-level resolution of the three-dimensional positions of the elements and their chemical environments. Finally, high-entropy nanoparticles have already shown promise in a wide range of catalysis and energy technologies because of their atomic structure and tunable electronic states. The development of high-throughput computational and experimental methods can accelerate the material exploration rate and enable machine-learning tools that are ideal for performance prediction and guided optimization. Materials discovery platforms, such as high-throughput exploration and data mining, may disruptively supplant conventional trial-and-error approaches for developing next-generation catalysts based on high-entropy nanoparticles. OUTLOOK High-entropy nanoparticles provide an enticing material platform for different applications. Being at an initial stage, enormous opportunities and grand challenges exist for these intrinsically complex materials. For the next stage of research and applications, we need (i) the controlled synthesis of high-entropy nanoparticles with targeted surface compositions and atomic arrangements; (ii) fundamental studies of surfaces, ordering, defects, and the dynamic evolution of high-entropy nanoparticles under catalytic conditions through precise structural characterization; (iii) identification and understanding of the active sites and performance origin (especially the enhanced stability) of high-entropy nanoparticles; and (iv) high-throughput computational and experimental techniques for rapid screening and data mining toward accelerated exploration of high-entropy nanoparticles in a multielemental space. We expect that discoveries about the synthesis-structure-property relationships of high-entropy nanoparticles and their guided discovery will greatly benefit a range of applications for catalysis, energy, and sustainability. High-entropy nanoparticles and data-driven discovery. Emerging high-entropy nanoparticles feature multielemental mixing within a large compositional space and can be used for diverse applications, particularly for catalysis. High-throughput and machine-learning tools, coupled with advanced characterization techniques, can substantially accelerate the optimization of these high-entropy nanoparticles, forming a closed-loop paradigm toward data-driven discovery. CREDITS: TOP RIGHT: YANG ET AL., NATURE 592, 60–64 (2021); CENTER: JIAQI DAI; BOTTOM RIGHT: XIE ET AL., NAT. COMMUN.10, 4011 (2019) Diversifying nanoparticles Multielement nanoparticles are attractive for a variety of applications in catalysis, energy, and other fields. A more diverse range and larger number of elements can be mixed together because of high-entropy mixing states accessed by a number of recently developed techniques. Yao et al. review these techniques along with characterization methods, high-throughput screening, and data-driven discovery for targeted applications. The wide range of different elements that can be mixed together presents a large number of opportunities and challenges. —BG A review highlights improvements in synthesizing and stabilizing multielement nanoparticles.

Journal ArticleDOI
TL;DR: A facile approach to boost the PCE of Pda for photothermal antibacterial therapy is developed, providing a significant step forward in advancing the application of PDA nano‐photothermal agents.
Abstract: Polydopamine (PDA) nanoparticles have emerged as an attractive biomimetic photothermal agent in photothermal antibacterial therapy due to their ease of synthesis, good biodegradability, long‐term safety, and excellent photostability. However, the therapeutic effects of PDA nanoparticles are generally limited by the low photothermal conversion efficiency (PCE). Herein, PDA@Ag nanoparticles are synthesized via growing Ag on the surface of PDA nanoparticles and then encapsulated into a cationic guar gum (CG) hydrogel network. The optimized CG/PDA@Ag platform exhibits a high PCE (38.2%), which is more than two times higher than that of pure PDA (16.6%). More importantly, the formulated CG/PDA@Ag hydrogel with many active groups can capture and kill bacteria through effective interactions between hydrogel and bacteria, thereby benefiting the antibacterial effect. As anticipated, the designed CG/PDA@Ag system combined the advantages of PDA@Ag nanoparticles (high PCE) and hydrogel (preventing aggregation of PDA@Ag nanoparticles and possessing inherent antibacterial ability) is demonstrated to have superior antibacterial efficacy both in vitro and in vivo. This study develops a facile approach to boost the PCE of PDA for photothermal antibacterial therapy, providing a significant step forward in advancing the application of PDA nano‐photothermal agents.

Journal ArticleDOI
TL;DR: In this article , the current state of the art and potential challenges in the green synthesis of CuO NPs are described and a thorough explanation of green synthesis and stabilizing agents for CuONPs made from these green sources is given.
Abstract: Copper oxide nanoparticles (CuO NPs) are one of the most widely used nanomaterials nowadays. CuO NPs have numerous applications in biological processes, medicine, energy devices, environmental remediation, and industrial fields from nanotechnology. With the increasing concern about the energy crisis and the challenges of chemical and physical approaches for preparing metal NPs, attempts to develop modern alternative chemistry have gotten much attention. Biological approaches that do not produce toxic waste and therefore do not require purification processes have been the subject of numerous studies. Plants may be extremely useful in the study of biogenic metal NP synthesis. This review aims to shed more light on the interactions between plant extracts and CuO NP synthesis. The use of living plants for CuO NPs biosynthesis is a cost-effective and environmentally friendly process. To date, the findings have revealed many aspects of plant physiology and their relationships to the synthesis of NPs. The current state of the art and potential challenges in the green synthesis of CuO NPs are described in this paper. This study found a recent increase in the green synthesis of CuO NPs using various plant extracts. As a result, a thorough explanation of green synthesis and stabilizing agents for CuO NPs made from these green sources is given. Additionally, the multifunctional applications of CuO NPs synthesized with various plant extracts in environmental remediation, sensing, catalytic reduction, photocatalysis, diverse biological activities, energy storage, and several organic transformations such as reduction, coupling, and multicomponent reactions were carefully reviewed. We expect that this review could serve as a useful guide for readers with a general interest in the plant extract mediated biosynthesis of CuO NPs and their potential applications.

Journal ArticleDOI
TL;DR: In this paper, the current state of the art and potential challenges in green synthesis of CuO NPs are described and a thorough explanation of green synthesis and stabilizing agents for CuONPs made from these green sources is given.

Journal ArticleDOI
TL;DR: The potential of nanomaterials for biomedical and healthcare applications has been extensively investigated in the last few decades and several case studies demonstrated that they can offer solutions to the current challenges of raw materials in the biomedical and health care fields as mentioned in this paper .
Abstract: In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.

Journal ArticleDOI
TL;DR: In this paper , a synergistic function between single Pd atoms (Pd1) and Pd nanoparticles(PdNPs) on graphitic carbon nitride (C3N4) for photocatalytic CO2 methanation is presented.
Abstract: Selective photoreduction of carbon dioxide (CO2) into carbon‐neutral fuels such as methane (CH4) is extremely desirable but remains a challenge since sluggish multiple proton–electron coupling transfer and various C1 intermediates are involved. Herein, a synergistic function between single Pd atoms (Pd1) and Pd nanoparticles (PdNPs) on graphitic carbon nitride (C3N4) for photocatalytic CO2 methanation is presented. The catalyst achieves a high selectivity of 97.8% for CH4 production with a yield of 20.3 µmol gcat.−1 h−1 in pure water. Mechanistic studies revealed that Pd1 sites activated CO2, while PdNPs sites boosted water (H2O) dissociation for increased H* coverage. The H* produced by PdNPs migrate to the Pd1 sites to promote multiple proton–electron coupling transfer via hydrogen spillover. Moreover, the adjacent Pd1 and PdNPs effectively stabilized intermediates such as *CHO, thereby favoring the pathway for CH4 production. This work provides a new perspective into the development of selective photocatalytic CO2 conversion through the artful design of synergistic catalytic sites.

Journal ArticleDOI
TL;DR: In this article , the conjugated polymer PM6 was matched with Y6 or PCBM electron acceptors and achieved external quantum efficiencies of 1.7% to 2.6% at 400 to 700 nm, respectively.
Abstract: Organic semiconductor photocatalysts for the production of solar fuels are attractive as they can be synthetically tuned to absorb visible light while simultaneously retaining suitable energy levels to drive a range of processes. However, a greater understanding of the photophysics that determines the function of organic semiconductor heterojunction nanoparticles is needed to optimize performance. Here, we show that such materials can intrinsically generate remarkably long-lived reactive charges, enabling them to efficiently drive sacrificial hydrogen evolution. Our optimized hetereojunction photocatalysts comprise the conjugated polymer PM6 matched with Y6 or PCBM electron acceptors, and achieve external quantum efficiencies of 1.0% to 5.0% at 400 to 900 nm and 8.7% to 2.6% at 400 to 700 nm, respectively. Employing transient and operando spectroscopies, we find that the heterojunction structure in these nanoparticles greatly enhances the generation of long-lived charges (millisecond to second timescale) even in the absence of electron/hole scavengers or Pt. Such long-lived reactive charges open potential applications in water-splitting Z-schemes and in driving kinetically slow and technologically desirable oxidations. Organic semiconductor heterojunction photocatalysts are promising for synthesis of solar fuels yet a deeper understanding of their underlying photophysics is needed to improve performance. Here, the authors show that such materials can intrinsically generate remarkably long-lived reactive charges, enabling them to efficiently drive hydrogen evolution.

Journal ArticleDOI
TL;DR: In this article , a three-dimensional hybrid fiber host consisting of interconnected N-doped hollow carbon spheres embedded with Sn nanoparticles (denoted as Sn@NHCF) was developed for Zn metal anodes in high-performance zinc metal batteries.
Abstract: We developed a three-dimensional hybrid fiber host consisting of interconnected N-doped hollow carbon spheres embedded with Sn nanoparticles (denoted as Sn@NHCF) for Zn metal anodes in high-performance Zn metal batteries. Experimental observations and density functional theory calculation reveal that the zincophilic Sn nanoparticles and N-doped carbons enable the homogeneous Zn deposition on the interior and exterior surfaces of the hollow fibers. Moreover, the hierarchical hollow fiber network effectively reduces the structural stress during the plating/stripping process. As a result, the developed Sn@NHCF host exhibits remarkable electrochemical properties in terms of high Coulombic efficiency, low voltage hysteresis, and prolonged cycling stability without dendrite formation. Moreover, a full cell based on the designed Sn@NHCF-Zn composite anode and a V2O5 cathode demonstrates superior rate capability and stable cycle life. This work provides a new strategy for the design of dendrite-free Zn anodes for practical applications.

Journal ArticleDOI
TL;DR: In this article , a unique metal-organic framework (MOF) crystalline matrix with disulfide trimeric unit as the building block was in situ synthesized by integration of dynamic covalent chemistry and coordination chemistry.
Abstract: The development of electrocatalysts for nitrogen reduction reaction (NRR) at ambient conditions, with both high NH3 yield and Faradaic efficiency, is currently a great challenge. To this aim, a unique metal–organic framework (MOF) crystalline matrix with disulfide trimeric unit as the building block was in situ synthesized by integration of dynamic covalent chemistry and coordination chemistry. This MOF with high porosity and excellent stability could be used as a host material to encapsulate well-dispersed Au nanoparticles (NPs) with ultrafine size of 1.9 ± 0.4 nm. After surface modification of [email protected] by using organosilicone, the hydrophobic-treated [email protected] (HT [email protected]) composite shows remarkable electrocatalytic performances for NRR, with the highest NH3 yield of 49.5 μg h–1 mgcat.–1 and the state-of-the-art Faradaic efficiency of 60.9% in water medium at ambient conditions. The favorable role of MOFs with functional sulfur groups on modulating the active Au sites and the great effect of hydrophobic coatings on suppressing the competitive hydrogen evolution reaction (HER) have been further demonstrated. This work provides a universal strategy to design composite electrocatalysts for high-efficient and long-term NH3 production.

Journal ArticleDOI
TL;DR: In this paper, a unique metal-organic framework (MOF) crystalline matrix with disulfide trimeric unit as the building block was in situ synthesized by integration of dynamic covalent chemistry and coordination chemistry.
Abstract: The development of electrocatalysts for nitrogen reduction reaction (NRR) at ambient conditions, with both high NH3 yield and Faradaic efficiency, is currently a great challenge. To this aim, a unique metal–organic framework (MOF) crystalline matrix with disulfide trimeric unit as the building block was in situ synthesized by integration of dynamic covalent chemistry and coordination chemistry. This MOF with high porosity and excellent stability could be used as a host material to encapsulate well-dispersed Au nanoparticles (NPs) with ultrafine size of 1.9 ± 0.4 nm. After surface modification of Au@MOF by using organosilicone, the hydrophobic-treated Au@MOF (HT Au@MOF) composite shows remarkable electrocatalytic performances for NRR, with the highest NH3 yield of 49.5 μg h–1 mgcat.–1 and the state-of-the-art Faradaic efficiency of 60.9% in water medium at ambient conditions. The favorable role of MOFs with functional sulfur groups on modulating the active Au sites and the great effect of hydrophobic coatings on suppressing the competitive hydrogen evolution reaction (HER) have been further demonstrated. This work provides a universal strategy to design composite electrocatalysts for high-efficient and long-term NH3 production.

Journal ArticleDOI
TL;DR: In this article , an ultrasensitive, label-free molecularly imprinted polymer (MIP) voltammetric sensor was fabricated for the selective determination of NOR, based on an Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite (BPNS-AuNP) covered by a polypyrrole-imprinted film.

Journal ArticleDOI
TL;DR: In terms of cost-efficiency, biocompatibility, environmental friendliness, and scalability, green nanoparticle synthesis is a novel field of nanotechnology that outperforms both physical and chemical approaches as discussed by the authors .

Journal ArticleDOI
TL;DR: In this article , the behavior of the human cardiovascular system is characterized by the Casson fluid model while the physical properties of iron (Fe3O4) and copper (Cu) are used in the analysis.
Abstract: Curved veins and arteries make up the human cardiovascular system, and the peristalsis process underlies the blood flowing in these ducts. The blood flow in the presence of hybrid nanoparticles through a tapered complex wavy curved channel is numerically investigated. The behavior of the blood is characterized by the Casson fluid model while the physical properties of iron (Fe3O4) and copper (Cu) are used in the analysis. The fundamental laws of mass, momentum and energy give rise the system of nonlinear coupled partial differential equations which are normalized using the variables, and the resulting set of governing relations are simplified in view of a smaller Reynolds model approach. The numerical simulations are performed using the computational software Mathematica’s built-in ND scheme. It is noted that the velocity of the blood is abated by the nanoparticles’ concentration and assisted in the non-uniform channel core. Furthermore, the nanoparticles’ volume fraction and the dimensionless curvature of the channel reduce the temperature profile.

Journal ArticleDOI
TL;DR: In this article, the effect of N-doped carbon skeletons on the absorption ability of carbon-based absorbers has been investigated, and the authors provided a valuable approach for fabricating high-efficiency microwave absorption materials by combining the control of morphology and Ndoped effect on the absorbers.

Journal ArticleDOI
TL;DR: In this paper , a heterogeneous Ni-MoN catalyst consisting of Ni and MoN nanoparticles on amorphous MoN nanorods is demonstrated, which can sustain large-current-density HER with outstanding performance.
Abstract: Achieving efficient and durable nonprecious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is desirable but remains a significant challenge. Here, a heterogeneous Ni‐MoN catalyst consisting of Ni and MoN nanoparticles on amorphous MoN nanorods that can sustain large‐current‐density HER with outstanding performance is demonstrated. The hierarchical nanorod–nanoparticle structure, along with a large surface area and multidimensional boundaries/defects endows the catalyst with abundant active sites. The hydrophilic surface helps to achieve accelerated gas‐release capabilities and is effective in preventing catalyst degradation during water electrolysis. Theoretical calculations further prove that the combination of Ni and MoN effectively modulates the electron redistribution at their interface and promotes the sluggish water‐dissociation kinetics at the Mo sites. Consequently, this Ni‐MoN catalyst requires low overpotentials of 61 and 136 mV to drive current densities of 100 and 1000 mA cm−2, respectively, in 1 m KOH and remains stable during operation for 200 h at a constant current density of 100 or 500 mA cm−2. This good HER catalyst also works well in alkaline seawater electrolyte and shows outstanding performance toward overall seawater electrolysis with ultralow cell voltages.

Journal ArticleDOI
TL;DR: In this article , three-dimensional Holey nitrogen-doped carbon matrixes decorated with molybdenum dioxide (MoO 2 ) nanoparticles were successfully synthesized via a NaCl-assisted template strategy.

Journal ArticleDOI
TL;DR: In this paper , the authors synthesized various Bi2O2CO3 nanostructures via different hydrothermal routes, including nanosheets, nanoplates, nanoparticles, nanosheet-assembled hierarchical nanotubes, pinecone-like hierarchical nanosynthetic structures, and carnation flowerlike hierarchical structures.

Journal ArticleDOI
TL;DR: In this paper , the authors reveal the restructuring of the as-synthesized Cu-N4 single-atom site to the nanoparticles of ∼5 nm during the electrochemical reduction of nitrate to ammonia, a green ammonia production route upon combined with the plasma assisted oxidation of nitrogen.
Abstract: Restructuring is ubiquitous in thermocatalysis and of pivotal importance to identify the real active site, yet it is less explored in electrocatalysis. Herein, by using operando X-ray absorption spectroscopy in conjunction with advanced electron microscopy, we reveal the restructuring of the as-synthesized Cu-N4 single-atom site to the nanoparticles of ∼5 nm during the electrochemical reduction of nitrate to ammonia, a green ammonia production route upon combined with the plasma-assisted oxidation of nitrogen. The reduction of Cu2+ to Cu+ and Cu0 and the subsequent aggregation of Cu0 single atoms is found to occur concurrently with the enhancement of the NH3 production rate, both of them are driven by the applied potential switching from 0.00 to -1.00 V versus RHE. The maximum production rate of ammonia reaches 4.5 mg cm-2 h-1 (12.5 molNH3 gCu-1 h-1) with a Faradaic efficiency of 84.7% at -1.00 V versus RHE, outperforming most of the other Cu catalysts reported previously. After electrolysis, the aggregated Cu nanoparticles are reversibly disintegrated into single atoms and then restored to the Cu-N4 structure upon being exposed to an ambient atmosphere, which masks the potential-induced restructuring during the reaction. The synchronous changes of the Cu0 percentage and the ammonia Faradaic efficiency with the applied potential suggests that the Cu nanoparticles are the genuine active sites for nitrate reduction to ammonia, which is corroborated with both the post-deposited Cu NP catalyst and density functional theory calculations.


Journal ArticleDOI
TL;DR: In this article , the similarity solutions of the governing equations that models the dynamics of colloidal mixture of water with spherical carbon nanotubes, cylindrical graphene, and platelet alumina nanoparticles at different levels of partial slip considering the cases of forced, free and mixed convection were presented.