scispace - formally typeset
Search or ask a question
Topic

Nanoporous

About: Nanoporous is a research topic. Over the lifetime, 17209 publications have been published within this topic receiving 535527 citations.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: A review with 156 refs on interfacial electron transfer reactions in colloidal semiconductor solns and thin films and their application for solar light energy conversion and photocatalytic water purifn is presented in this paper.
Abstract: A review with 156 refs. on interfacial electron transfer reactions in colloidal semiconductor solns. and thin films and their application for solar light energy conversion and photocatalytic water purifn. Some of the topics discussed include; optical and electronic properties of colloidal semiconductor particles, quantum size effects in the photoluminescence of colloidal semiconductors, light-induced charge sepn., dynamics of interfacial charge transfer processes, properties and prepn. of nanocryst. semiconductor electrodes, energetics and operations of the nanoporous solar cell.

4,937 citations

Journal ArticleDOI

[...]

19 Feb 1999-Science
TL;DR: In this paper, a highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield.
Abstract: Although zeolites and related materials combine nanoporosity with high thermal stability, they are difficult to modify or derivatize in a systematic way. A highly porous metal coordination polymer [Cu3(TMA)2(H2O)3]n (where TMA is benzene-1,3,5-tricarboxylate) was formed in 80 percent yield. It has interconnected [Cu2(O2CR)4] units (where R is an aromatic ring), which create a three-dimensional system of channels with a pore size of 1 nanometer and an accessible porosity of about 40 percent in the solid. Unlike zeolites, the channel linings can be chemically functionalized; for example, the aqua ligands can be replaced by pyridines. Thermal gravimetric analysis and high-temperature single-crystal diffractometry indicate that the framework is stable up to 240 degreesC.

4,590 citations

Journal ArticleDOI

[...]

12 Jul 2001-Nature
TL;DR: A general strategy for the synthesis of highly ordered, rigid arrays of nanoporous carbon having uniform but tunable diameters is described, which gives rise to promising electrocatalytic activity for oxygen reduction and could prove to be practically relevant for fuel-cell technologies.
Abstract: Nanostructured carbon materials are potentially of great technological interest for the development of electronic1,2, catalytic3,4 and hydrogen-storage systems5,6. Here we describe a general strategy for the synthesis of highly ordered, rigid arrays of nanoporous carbon having uniform but tunable diameters (typically 6 nanometres inside and 9 nanometres outside). These structures are formed by using ordered mesoporous silicas as templates, the removal of which leaves a partially ordered graphitic framework. The resulting material supports a high dispersion of platinum nanoparticles, exceeding that of other common microporous carbon materials (such as carbon black, charcoal and activated carbon fibres). The platinum cluster diameter can be controlled to below 3 nanometres, and the high dispersion of these metal clusters gives rise to promising electrocatalytic activity for oxygen reduction, which could prove to be practically relevant for fuel-cell technologies. These nanomaterials can also be prepared in the form of free-standing films by using ordered silica films as the templates.

2,352 citations

Journal ArticleDOI

[...]

22 Mar 2001-Nature
TL;DR: It is demonstrated that nanoporosity in metals is due to an intrinsic dynamical pattern formation process, and that chemically tailored nanoporous gold made by dealloying Ag-Au should be suitable for sensor applications, particularly in a biomaterials context.
Abstract: Dealloying is a common corrosion process during which an alloy is 'parted' by the selective dissolution of the most electrochemically active of its elements. This process results in the formation of a nanoporous sponge composed almost entirely of the more noble alloy constituents. Although considerable attention has been devoted to the morphological aspects of the dealloying process, its underlying physical mechanism has remained unclear. Here we propose a continuum model that is fully consistent with experiments and theoretical simulations of alloy dissolution, and demonstrate that nanoporosity in metals is due to an intrinsic dynamical pattern formation process. That is, pores form because the more noble atoms are chemically driven to aggregate into two-dimensional clusters by a phase separation process (spinodal decomposition) at the solid-electrolyte interface, and the surface area continuously increases owing to etching. Together, these processes evolve porosity with a characteristic length scale predicted by our continuum model. We expect that chemically tailored nanoporous gold made by dealloying Ag-Au should be suitable for sensor applications, particularly in a biomaterials context.

2,348 citations

Journal ArticleDOI

[...]

TL;DR: Aluminosilicate zeolites such as UTD-1 belong to a family of nanoporous inorganic materials that find utility in catalysis, separation, and ion exchange.
Abstract: Aluminosilicate zeolites such as UTD-1 (structure shown) belong to a family of nanoporous inorganic materials that find utility in catalysis, separation, and ion exchange. During the last decade, the rate of discovery of new open-framework materials based, for example, on phosphates, sulfides, halides, nitrides, and coordination compounds has increased dramatically. The synthesis, structures, and properties of this remarkable class of materials are reviewed.

2,150 citations

Network Information
Related Topics (5)
Graphene
144.5K papers, 4.9M citations
94% related
Carbon nanotube
109K papers, 3.6M citations
94% related
Oxide
213.4K papers, 3.6M citations
93% related
Raman spectroscopy
122.6K papers, 2.8M citations
91% related
Thin film
275.5K papers, 4.5M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023554
20221,167
2021957
20201,006
20191,156
20181,200