scispace - formally typeset
Search or ask a question
Topic

Navier–Stokes equations

About: Navier–Stokes equations is a research topic. Over the lifetime, 18180 publications have been published within this topic receiving 552555 citations. The topic is also known as: Navier-Stokes equations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of dissipation models on the accuracy, stability, and convergence of transonic airfoils is investigated using an implicit approximate factorization code (ARC2D).
Abstract: Various artificial dissipation models that are used with central difference algorithms for the Euler equations are analyzed for their effect on accuracy, stability, and convergence rates. In particular, linear and nonlinear models are investigated using an implicit approximate factorization code (ARC2D) for transonic airfoils. Fully implicit application of the dissipation models is shown to improve robustness and convergence rates. The treatment of dissipation models at boundaries will be examined. It will be shown that accurate, error free solutions with sharp shocks can be obtained using a central difference algorithm coupled with an appropriate nonlinear artificial dissipation model. I. Introduction T HE solution of the Euler equations using numerical techniques requires the use of either a differencing method with inherent dissipation or the addition of dissipation terms to a nondissipative scheme. This is because the Euler equations do not provide any natural dissipation mechanism (such as viscosity in the Navier-Stokes equations) that would eliminate high frequencies which are caused by nonlinearitie s and especially shocks. A variety of numerical algorithms and computer codes for the Euler equations have been developed. Methods such as MacCormack's1 explicit

449 citations

Journal ArticleDOI
TL;DR: In this article, a turbulence bridging method for any filter-width or scale resolution-fully averaged to completely resolved-is developed, given the name partially averaged Navier-Stokes (PANS) method.
Abstract: A turbulence bridging method purported for any filter-width or scale resolution-fully averaged to completely resolved-is developed. The method is given the name partially averaged Navier-Stokes (PANS) method. In PANS, the model filter width (extent of partial averaging) is controlled through two parameters: the unresolved-to-total ratios of kinetic energy (f k ) and dissipation (f e ). The PANS closure model is derived formally from the Reynolds-averaged Navier-Stokes (RANS) model equations by addressing the following question: if RANS represents the closure for fully averaged statistics, what is the corresponding closure for partially averaged statistics? The PANS equations vary smoothly from RANS equations to Navier-Stokes (direct numerical simulation) equations, depending on the values of the filter-width control parameters. Preliminary results are very encouraging.

445 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider a two dimensional viscous shallow water model with friction term and prove the existence of global weak solutions and convergence to the strong solution of the viscous quasi-geostrophic equation with free surface term.
Abstract: We consider a two dimensional viscous shallow water model with friction term. Existence of global weak solutions is obtained and convergence to the strong solution of the viscous quasi-geostrophic equation with free surface term is proven in the well prepared case. The ill prepared data case is also discussed.

444 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the global, in time, regularity of the three dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations is bounded by (L/l�� ∈ )3, where L is a typical large spatial scale (e.g., the size of the domain).
Abstract: We show here the global, in time, regularity of the three dimensional viscous Camassa–Holm (Navier–Stokes-alpha) (NS-α) equations. We also provide estimates, in terms of the physical parameters of the equations, for the Hausdorff and fractal dimensions of their global attractor. In analogy with the Kolmogorov theory of turbulence, we define a small spatial scale, l ∈ , as the scale at which the balance occurs in the mean rates of nonlinear transport of energy and viscous dissipation of energy. Furthermore, we show that the number of degrees of freedom in the long-time behavior of the solutions to these equations is bounded from above by (L/l ∈ )3, where L is a typical large spatial scale (e.g., the size of the domain). This estimate suggests that the Landau–Lifshitz classical theory of turbulence is suitable for interpreting the solutions of the NS-α equations. Hence, one may consider these equations as a closure model for the Reynolds averaged Navier–Stokes equations (NSE). We study this approach, further, in other related papers. Finally, we discuss the relation of the NS-α model to the NSE by proving a convergence theorem, that as the length scale α 1 tends to zero a subsequence of solutions of the NS-α equations converges to a weak solution of the three dimensional NSE.

444 citations


Network Information
Related Topics (5)
Partial differential equation
70.8K papers, 1.6M citations
91% related
Boundary value problem
145.3K papers, 2.7M citations
88% related
Reynolds number
68.4K papers, 1.6M citations
86% related
Boundary layer
64.9K papers, 1.4M citations
86% related
Differential equation
88K papers, 2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023183
2022389
2021544
2020509
2019545
2018575