scispace - formally typeset
Search or ask a question
Topic

Neanderthal genome project

About: Neanderthal genome project is a research topic. Over the lifetime, 123 publications have been published within this topic receiving 17619 citations.


Papers
More filters
Journal ArticleDOI
07 May 2010-Science
TL;DR: The genomic data suggest that Neandertals mixed with modern human ancestors some 120,000 years ago, leaving traces of Ne andertal DNA in contemporary humans, suggesting that gene flow from Neand Bertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.
Abstract: Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.

3,575 citations

Journal ArticleDOI
02 Jan 2014-Nature
TL;DR: It is shown that interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene and a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans is established.
Abstract: We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.

1,691 citations

Journal ArticleDOI
12 Oct 2012-Science
TL;DR: The genomic sequence provides evidence for very low rates of heterozygosity in the Denisova, probably not because of recent inbreeding, but instead because of a small population size, and illuminates the relationships between humans and archaics, including Neandertals, and establishes a catalog of genetic changes within the human lineage.
Abstract: We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30×) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.

1,690 citations

Journal ArticleDOI
23 Dec 2010-Nature
TL;DR: A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans.
Abstract: Using DNA extracted from a finger bone found in Denisova Cave in southern Siberia, we have sequenced the genome of an archaic hominin to about 1.9-fold coverage. This individual is from a group that shares a common origin with Neanderthals. This population was not involved in the putative gene flow from Neanderthals into Eurasians; however, the data suggest that it contributed 4–6% of its genetic material to the genomes of present-day Melanesians. We designate this hominin population ‘Denisovans’ and suggest that it may have been widespread in Asia during the Late Pleistocene epoch. A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone. This tooth shares no derived morphological features with Neanderthals or modern humans, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans.

1,506 citations

Journal ArticleDOI
11 Jul 1997-Cell
TL;DR: In this article, DNA was extracted from a Neandertal-type specimen found in 1856 in western Germany and a hitherto unknown mt-DNA sequence was determined by sequencing clones from short overlapping PCR products.

1,207 citations


Network Information
Related Topics (5)
Chromatin
50.7K papers, 2.7M citations
65% related
DNA
107.1K papers, 4.7M citations
65% related
Mutation
45.2K papers, 2.6M citations
65% related
Transcription (biology)
56.5K papers, 2.9M citations
64% related
DNA replication
30.1K papers, 1.5M citations
64% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20215
20205
20196
20184
20174
20168