scispace - formally typeset
Search or ask a question
Topic

Near and far field

About: Near and far field is a research topic. Over the lifetime, 15922 publications have been published within this topic receiving 220571 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a Yagi-Uda-like optical nano-antenna concept using resonant core-shell plasmonic particles as its reflectors anddirectors is studied numerically.
Abstract: A Yagi-Uda-like optical nanoantenna concept using resonant core-shell plasmonic particles as its ``reflectors'' and ``directors'' is studied numerically Such particles when placed near an optical dipole source in a certain arrangement may exhibit large induced dipole moments, resulting in shaping the far-field radiation pattern, analogous to the far field of classical Yagi-Uda antennas in the microwave regime The variation of the ratio of radii in concentric core-shell nanostructure is used to tailor the phase of the polarizabilities of the particles and, consequently, the antenna's far-field pattern The idea of a nanospectrum analyzer is also briefly proposed for molecular spectroscopy

233 citations

Journal ArticleDOI
TL;DR: The longitudinal electric component of Belinfante's elusive spin momentum density is determined, a solenoidal field quantity often referred to as "virtual" in this work.
Abstract: We generate tightly focused optical vector beams whose electric fields spin around an axis transverse to the beams' propagation direction. We experimentally investigate these fields by exploiting the directional near-field interference of a dipolelike plasmonic field probe placed adjacent to a dielectric interface. This directionality depends on the transverse electric spin density of the excitation field. Near- to far-field conversion mediated by the dielectric interface enables us to detect the directionality of the emitted light in the far field and, therefore, to measure the transverse electric spin density with nanoscopic resolution. Finally, we determine the longitudinal electric component of Belinfante's elusive spin momentum density, a solenoidal field quantity often referred to as "virtual."

230 citations

Journal ArticleDOI
TL;DR: In this article, a method for computing near and far-field patterns of an antenna from its near-field measurements taken over an arbitrarily shaped geometry is presented, where the measured data need not satisfy the Nyquist sampling criteria and an electric field integral equation is developed to relate the near field to the equivalent electric current.
Abstract: Presented here is a method for computing near- and far-field patterns of an antenna from its near-field measurements taken over an arbitrarily shaped geometry. This method utilizes near-field data to determine an equivalent electric current source over a fictitious surface which encompasses the antenna. This electric current, once determined, can be used to ascertain the near and the far field. This method demonstrates the concept of analytic continuity, i.e., once the value of the electric field is known for one region in space, from a theoretical perspective, its value for any other region can be extrapolated. It is shown that the equivalent electric current produces the correct fields in the regions in front of the antenna regardless of the geometry over which the near-field measurements are made. In this approach, the measured data need not satisfy the Nyquist sampling criteria. An electric field integral equation is developed to relate the near field to the equivalent electric current. A moment method procedure is employed to solve the integral equation by transforming it into a matrix equation. A least-squares solution via singular value decomposition is used to solve the matrix equation. Computations with both synthetic and experimental data, where the near field of several antenna configurations are measured over various geometrical surfaces, illustrate the accuracy of this method.

230 citations

Journal ArticleDOI
TL;DR: The reliability of the FETD method is established by calculating the electric field on simple structures like thin cylinders, spheres, and ellipsoids, and comparing the results with analytical solutions.
Abstract: Enhancement γ of the electrical field at the end of a tip relative to the incident field in a focused radiation beam is calculated by the finite-element time-domain (FETD) method. First, the reliability of the FETD method is established by calculating the electric field on simple structures like thin cylinders, spheres, and ellipsoids, and comparing the results with analytical solutions. The calculations on these test structures also reveal that phase retardation effects substantially modify γ when the size of the structure is larger than approximately λ/4, λ being the radiation wavelength. For plasmon resonance, in particular, phase retardation severely reduces the resonance and the expected field enhancement for a gold tip. The small value of γ=4 calculated by FETD is about an order of magnitude smaller than the value found in recent published work. Resonance effects can be recovered for special tips, which have a discontinuity or a different material composition at the end of the tip. Some tuning of the discontinuity dimension is needed to maximize the resonance. Under optimal conditions for plasmon resonance, an enhancement in the electric field of about 50 is calculated at the end of a small gold protrusion mounted on a wider silicon or glass tip.

229 citations

Journal ArticleDOI
TL;DR: In this article, the far-field radiation characteristics of a two-dimensional (2D) periodic leaky-wave antenna (LWA) constructed from a periodic array of metal patches on a grounded dielectric substrate is investigated.
Abstract: The far-field radiation characteristics of a two-dimensional (2-D) periodic leaky-wave antenna (LWA) constructed from a periodic array of metal patches on a grounded dielectric substrate is investigated. A simple dipole source is used as the excitation. Reciprocity together with a periodic spectral-domain method of moments is used to calculate the far-field pattern. Design rules for the scan angle, the substrate dielectric constant, and the periodicity are provided. Finally, a comparison of the 2-D periodic LWA and a dielectric-layer LWA is given to show the similar performance of the two antennas.

223 citations


Network Information
Related Topics (5)
Scattering
152.3K papers, 3M citations
86% related
Electric field
87.1K papers, 1.4M citations
86% related
Dielectric
169.7K papers, 2.7M citations
84% related
Amplifier
163.9K papers, 1.3M citations
82% related
Optical fiber
167K papers, 1.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023132
2022281
2021376
2020460
2019640
2018604