scispace - formally typeset
Search or ask a question
Topic

Necking

About: Necking is a research topic. Over the lifetime, 5280 publications have been published within this topic receiving 113945 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a tensile test of P92 steel was carried out at 823 K, showing an extended and stable softening stage on true stress-strain curves after some work-hardening.
Abstract: 9–12%Cr creep-resistant ferritic-martensitic steels are candidates for structural components of Generation IV nuclear power plants. However, they are sensitive to softening during low-cycle fatigue, creep and creep-fatigue tests, due to the destabilisation of the tempered martensite microstructure, possibly inducing a decrease in further creep resistance. To better identify the softening mechanisms in P92 steel during uniaxial deformation, tensile tests were carried out at 823 K, showing an extended and stable softening stage on true stress–strain curves after some work-hardening. Three phenomena were studied in order to understand this behaviour: mechanical instability (necking), damage and grain size evolution. Examination of fractured and non-fractured tensile specimens (light optical and electron microscopy, macrohardness) suggested that the physical mechanisms responsible for softening are mainly (sub)grain size evolution and diffuse necking. Models were proposed to predict grain growth and beginning of the mechanical instability during homogeneous deformation.

89 citations

Journal ArticleDOI
TL;DR: In this article, a new level of understanding for the hole-flanging process was provided by combining circle grid analysis and independent characterization of the mechanical properties and formability limits of the material with the fabrication of conical and cylindrical holeflanges.
Abstract: Incremental forming of hole-flanges in sheet metal parts is an emerging process with a high potential economic payoff for rapid prototyping and for small quantity production. However, as with all new sheet metal forming processes, there is need for examining its deformation mechanics and describing the physics behind the occurrence of failure. How metal fails, how pre-cut holes influence strain and stress in single point incremental forming, and how these subjects can be brought together in order to understand the overall formability of hole-flanging by multi-stage incremental forming are still not well understood. However, they are of great importance for improving the performance and industrial applicability of the process. This paper attempts to provide a new level of understanding for the process by combining circle grid analysis and independent characterization of the mechanical properties and formability limits of the material with the fabrication of conical and cylindrical hole-flanges. Experimental observations, measured strain paths and material formability limits by necking and fracture allow concluding that hole-flanging by incremental forming gives rise to a new mode of deformation, not found in conventional incremental forming of sheet metal blanks without pre-cut holes, and to failure by fracture without previous localized necking.

89 citations

Journal ArticleDOI
Chen Winston Hsong1
TL;DR: In this article, the necking process of an axisymmetric tension specimen made of elastic-plastic, strain-hardening material is analyzed by a generalized J2-flow theory for large deformations.

89 citations

Journal ArticleDOI
TL;DR: In this paper, the advanced fabrication of in-situ dendrite/metallic glass matrix (MGM) composites is reviewed, where semi-solid processing and Bridgman solidification are two methods, which can make the dendrites homogeneously dispersed within the metallic glass matrix.

89 citations


Network Information
Related Topics (5)
Grain boundary
70.1K papers, 1.5M citations
84% related
Microstructure
148.6K papers, 2.2M citations
84% related
Ultimate tensile strength
129.2K papers, 2.1M citations
84% related
Alloy
171.8K papers, 1.7M citations
83% related
Nucleation
63.8K papers, 1.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023174
2022351
2021241
2020249
2019213
2018238