scispace - formally typeset
Search or ask a question
Topic

Negative impedance converter

About: Negative impedance converter is a research topic. Over the lifetime, 5801 publications have been published within this topic receiving 87636 citations.


Papers
More filters
Journal Article
TL;DR: In this paper, negative capacitance in a thin epitaxial ferroelectric film was observed to decrease with time, in exactly the opposite direction to which voltage for a regular capacitor should change.
Abstract: The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

385 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional steep-slope MOSFET with a ferroelectric hafnium zirconium oxide layer in the gate dielectric stack is presented.
Abstract: The so-called Boltzmann tyranny defines the fundamental thermionic limit of the subthreshold slope of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV dec-1 at room temperature and therefore precludes lowering of the supply voltage and overall power consumption 1,2 . Adding a ferroelectric negative capacitor to the gate stack of a MOSFET may offer a promising solution to bypassing this fundamental barrier 3 . Meanwhile, two-dimensional semiconductors such as atomically thin transition-metal dichalcogenides, due to their low dielectric constant and ease of integration into a junctionless transistor topology, offer enhanced electrostatic control of the channel 4-12 . Here, we combine these two advantages and demonstrate a molybdenum disulfide (MoS2) two-dimensional steep-slope transistor with a ferroelectric hafnium zirconium oxide layer in the gate dielectric stack. This device exhibits excellent performance in both on and off states, with a maximum drain current of 510 μA μm-1 and a sub-thermionic subthreshold slope, and is essentially hysteresis-free. Negative differential resistance was observed at room temperature in the MoS2 negative-capacitance FETs as the result of negative capacitance due to the negative drain-induced barrier lowering. A high on-current-induced self-heating effect was also observed and studied.

382 citations

Journal ArticleDOI
TL;DR: In this paper, a low-power breadboard operating at 200-300 kHz has been built for switching power supplies and battery chargers, which can operate in either the step-up or step-down mode.
Abstract: Transistor dc-dc converters which employ a resonant circuit are described. A resonant circuit is driven with square waves of current or voltage, and by adjusting the frequency around the resonant point, the voltage on the resonant components can be adjusted to any practical voltage level. By rectifying the voltage across the resonant elements, a dc voltage is obtained which can be either higher or lower than the input dc voltage to the converter. Thus, the converter can operate in either the step-up or step-down mode. In addition, the switching losses in the inverter devices and rectifiers are extremely low due to the sine waves that occur from the use of a resonant circuit (as opposed to square waves in a conventional converter); also, easier EMI filtering should result. In the voltage input version, the converter is able to use the parasitic diode associated with an FET or monolithic Darlington, while in the current input version, the converter needs the inverse blocking capability which can be obtained with an IGT or GTO device. A low-power breadboard operating at 200-300 kHz has been built. Two typical application areas are switching power supplies and battery chargers. The converter circuits offer improvements over conventional circuits due to their high efficiency (low switching losses), small reactive components (high-frequency operation), and their step-up/stepdown ability.

371 citations

Journal ArticleDOI
TL;DR: A three-port converter with three active full bridges, two series-resonant tanks, and a three-winding transformer is proposed in this article, which uses a single power conversion stage with high-frequency link to control power flow between batteries, load and a renewable source such as fuel cell.
Abstract: In this paper, a three-port converter with three active full bridges, two series-resonant tanks, and a three-winding transformer is proposed. It uses a single power conversion stage with high-frequency link to control power flow between batteries, load, and a renewable source such as fuel cell. The converter has capabilities of bidirectional power flow in the battery and the load port. Use of series-resonance aids in high switching frequency operation with realizable component values when compared to existing three-port converter with only inductors. The converter has high efficiency due to soft-switching operation in all three bridges. Steady-state analysis of the converter is presented to determine the power flow equations, tank currents, and soft-switching region. Dynamic analysis is performed to design a closed-loop controller that will regulate the load-side port voltage and source-side port current. Design procedure for the three-port converter is explained and experimental results of a laboratory prototype are presented.

361 citations

Journal ArticleDOI
TL;DR: A novel high step-up dc-dc converter for fuel cell energy conversion that utilizes a multiwinding coupled inductor and a voltage doubler to achieve highstep-up voltage gain and high conversion efficiency.
Abstract: A novel high step-up dc-dc converter for fuel cell energy conversion is presented in this paper. The proposed converter utilizes a multiwinding coupled inductor and a voltage doubler to achieve high step-up voltage gain. The voltage on the active switch is clamped, and the energy stored in the leakage inductor is recycled. Therefore, the voltage stress on the active switch is reduced, and the conversion efficiency is improved. Finally, a 750-W laboratory prototype converter supplied by a proton exchange membrane fuel cell power source and an output voltage of 400 V is implemented. The experimental results verify the performances, including high voltage gain, high conversion efficiency, and the effective suppression of the voltage stress on power devices. The proposed high step-up converter can feasibly be used for low-input-voltage fuel cell power conversion applications.

343 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
94% related
Voltage
296.3K papers, 1.7M citations
93% related
Capacitance
69.6K papers, 1M citations
88% related
Transistor
138K papers, 1.4M citations
87% related
CMOS
81.3K papers, 1.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
2022104
2021120
2020131
2019134
2018155