scispace - formally typeset
Search or ask a question
Topic

Negative impedance converter

About: Negative impedance converter is a research topic. Over the lifetime, 5801 publications have been published within this topic receiving 87636 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a noninverting buck-boost switching converter for low voltage, portable applications, which can dynamically adjust the output voltage from 0.4 to 4.0 V, while satisfying a maximum load current of 0.65 A from an input supply of 2.4-3.4 V.
Abstract: With the increasing use of low voltage portable devices and growing requirements of functionalities embedded into such devices, efficient power management techniques are needed for longer battery life. Given the highly variable nature of batteries (e.g., 2.7-4.2 V for Li-ion), systems often require supply voltages to be both higher and lower than the battery voltage (e.g., power amplifier for CDMA applications), while supplying significant current, which is most efficiently generated by a noninverting buck-boost switching converter. In this paper, the design and experimental results of a new dynamic, noninverting, synchronous buck-boost converter for low voltage, portable applications is reported. The converter's output voltage is dynamically adjustable (on-the-fly) from 0.4 to 4.0 V, while capable of supplying a maximum load current of 0.65 A from an input supply of 2.4-3.4 V. The worst-case response time of the converter for a 0.4 to 4 V step change in its output voltage (corresponding to a 0.2 to 2 V step at its reference input) is less than 300 /spl mu/sec and to a load-current step of 0 to 0.5 A is within 200 /spl mu/sec, yielding only a transient error of 40 mV in the output voltage. This paper also presents a nonmathematical, intuitive analysis of the time-averaged, small-signal model of a noninverting buck-boost converter.

334 citations

Proceedings ArticleDOI
01 Dec 2011
TL;DR: In this paper, a design methodology of ferroelectric (FE) negative capacitance FETs based on the concept of capacitance matching is presented, which, besides achieving sub-60mV/dec subthreshold swing, can significantly boost the oncurrent in exchange for a nominal hysteresis.
Abstract: A design methodology of ferroelectric (FE) negative capacitance FETs (NCFETs) based on the concept of capacitance matching is presented. A new mode of NCFET operation, called the “antiferroelectric mode” is proposed, which, besides achieving sub-60mV/dec subthreshold swing, can significantly boost the on-current in exchange for a nominal hysteresis. Design considerations for different device parameters (FE thickness, EOT, source/drain overlap & gate length) are explored. It is suggested that relative improvement in device performance due to FE negative capacitance becomes more significant in very short channel length devices because of the increased drain-to-channel coupling.

319 citations

Proceedings ArticleDOI
Cecil W. Deisch1
13 Jun 1978
TL;DR: In this paper, a switching converter with an LC output filter behaves as a loose-tolerance voltage-controlled current source if each switch closure is ended when switch current reaches an adjustable threshold.
Abstract: A switching converter with an LC output filter behaves as a loose-tolerance voltage-controlled current source if each switch closure is ended when switch current reaches an adjustable threshold. This converter is then combined with an external feedback to produce a precise output voltage. By generating a fixed voltage with a current source in this manner, the converter has many advantages including continuous protection of the switches, stable and equal load sharing when several converters are operated in parallel, inherent overload protection, automatic switch symmetry correction, and fast system response.

319 citations

Journal ArticleDOI
TL;DR: In this article, a proof-of-concept demonstration of negative capacitance effect in a nanoscale ferroelectric-dielectric heterostructure was presented. But the authors did not consider the effect of temperature on the performance of a bilayer of Pb(Zr0.2Ti0.8)O3 and dielectric SrTiO3.
Abstract: We report a proof-of-concept demonstration of negative capacitance effect in a nanoscale ferroelectric-dielectric heterostructure. In a bilayer of ferroelectric Pb(Zr0.2Ti0.8)O3 and dielectric SrTiO3, the composite capacitance was observed to be larger than the constituent SrTiO3 capacitance, indicating an effective negative capacitance of the constituent Pb(Zr0.2Ti0.8)O3 layer. Temperature is shown to be an effective tuning parameter for the ferroelectric negative capacitance and the degree of capacitance enhancement in the heterostructure. Landau’s mean field theory based calculations show qualitative agreement with observed effects. This work underpins the possibility that by replacing gate oxides by ferroelectrics in nanoscale transistors, the sub threshold slope can be lowered below the classical limit (60 mV/decade).

300 citations

Patent
23 Jun 2005
TL;DR: In this paper, the driving and control device according to the present invention provides a desired switched current to a load including a string of one or more electronic devices, and comprises one or multiple voltage conversion means, one or several dimming control means, feedback means and one or many sensing means.
Abstract: The driving and control device according to the present invention provides a desired switched current to a load including a string of one or more electronic devices, and comprises one or more voltage conversion means, one or more dimming control means, one or more feedback means and one or more sensing means. The voltage conversion means may be a DC-to-DC converter for example and based on an input control signal converts the magnitude of the voltage from the power supply to another magnitude that is desired at the high side of the load. The dimming control means may comprise a switch such as a FET, BJT, relay, or any other type of switching device, for example, and provides control for activation and deactivation of the load. The feedback means is coupled to the voltage conversion means and a current sensing means and provides a feedback signal to the voltage conversion means that is indicative of the voltage drop across the current sensing means which thus represents the current flowing through the load. The current sensing means may comprise a fixed resistor, variable resistor, inductor, or some other element which has a predictable voltage-current relationship and thus will provide a measurement of the current flowing through the load based on a collected voltage signal. Based on the feedback signal received, the voltage conversion means can subsequently adjust its output voltage such that a constant switched current is provided to the load.

293 citations


Network Information
Related Topics (5)
Capacitor
166.6K papers, 1.4M citations
94% related
Voltage
296.3K papers, 1.7M citations
93% related
Capacitance
69.6K papers, 1M citations
88% related
Transistor
138K papers, 1.4M citations
87% related
CMOS
81.3K papers, 1.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
2022104
2021120
2020131
2019134
2018155