scispace - formally typeset
Search or ask a question

Showing papers on "Nervous system published in 2001"


Journal ArticleDOI
TL;DR: Neurotrophins regulate development, maintenance, and function of vertebrate nervous systems, and control synaptic function and synaptic plasticity, while continuing to modulate neuronal survival.
Abstract: Neurotrophins regulate development, maintenance, and function of vertebrate nervous systems. Neurotrophins activate two different classes of receptors, the Trk family of receptor tyrosine kinases and p75NTR, a member of the TNF receptor superfamily. Through these, neurotrophins activate many signaling pathways, including those mediated by ras and members of the cdc-42/ras/rho G protein families, and the MAP kinase, PI-3 kinase, and Jun kinase cascades. During development, limiting amounts of neurotrophins function as survival factors to ensure a match between the number of surviving neurons and the requirement for appropriate target innervation. They also regulate cell fate decisions, axon growth, dendrite pruning, the patterning of innervation and the expression of proteins crucial for normal neuronal function, such as neurotransmitters and ion channels. These proteins also regulate many aspects of neural function. In the mature nervous system, they control synaptic function and synaptic plasticity, while continuing to modulate neuronal survival.

3,968 citations


Journal ArticleDOI
TL;DR: It is no longer appropriate to consider solely neuron–neuron connections; it is also necessary to develop a view of the intricate web of active connections among glial cells, and between glia and neurons.
Abstract: Glial cells are emerging from the background to become more prominent in our thinking about integration in the nervous system. Given that glial cells associated with synapses integrate neuronal inputs and can release transmitters that modulate synaptic activity, it is time to rethink our understanding of the wiring diagram of the nervous system. It is no longer appropriate to consider solely neuron–neuron connections; we also need to develop a view of the intricate web of active connections among glial cells, and between glia and neurons. Without such a view, it might be impossible to decode the language of the brain.

1,385 citations


Journal ArticleDOI
TL;DR: From this phylogenetic orientation, the polyvagal theory proposes a biological basis for social behavior and an intervention strategy to enhance positive social behavior.

1,266 citations


Journal ArticleDOI
TL;DR: The cellular pathobiology including apoptosis suggests future strategies against neuropathic pain that emphasize preventive aspects, and an important sequela of nerve injury and other nervous system diseases such as virus attack is apoptosis of neurons in the peripheral and central nervous system.

866 citations


Journal ArticleDOI
TL;DR: It is shown that the transcription factor Sox10 is a key regulator in differentiation of peripheral glial cells in mice that carry a spontaneous or a targeted mutation of Sox10, and that it controls expression of ErbB3 in neural crest cells.
Abstract: The molecular mechanisms that determine glial cell fate in the vertebrate nervous system have not been elucidated. Peripheral glial cells differentiate from pluripotent neural crest cells. We show here that the transcription factor Sox10 is a key regulator in differentiation of peripheral glial cells. In mice that carry a spontaneous or a targeted mutation of Sox10, neuronal cells form in dorsal root ganglia, but Schwann cells or satellite cells are not generated. At later developmental stages, this lack of peripheral glial cells results in a severe degeneration of sensory and motor neurons. Moreover, we show that Sox10 controls expression of ErbB3 in neural crest cells. ErbB3 encodes a Neuregulin receptor, and down-regulation of ErbB3 accounts for many changes in development of neural crest cells observed in Sox10 mutant mice. Sox10 also has functions not mediated by ErbB3, for instance in the melanocyte lineage. Phenotypes observed in heterozygous mice that carry a targeted Sox10 null allele reproduce those observed in heterozygous Sox10(Dom) mice. Haploinsufficiency of Sox10 can thus cause pigmentation and megacolon defects, which are also observed in Sox10(Dom)/+ mice and in patients with Waardenburg-Hirschsprung disease caused by heterozygous SOX10 mutations.

856 citations


Journal ArticleDOI
TL;DR: Based on work in animal models, it appears that manipulation of NF-κB signaling may prove valuable in treating such conditions as ischemic stroke, physical trauma to the brain or spinal cord, and neurodegenerative disorders, including Alzheimer's disease and Parkinson’s disease.
Abstract: NF-κB is widely known for its ubiquitous roles in inflammation and immune responses, as well as in control of cell division and apoptosis. These roles are apparent in the nervous system, but neurons and their neighboring cells employ the NF-κB pathway for distinctive functions as well, ranging from development to the coordination of cellular responses to injury of the nervous system and to brain-specific processes such as the synaptic signaling that underlies learning and memory. Here we discuss the regulation of NF-κB activity by neurotransmitters and neurotrophic factors and the physiological and pathological effects of NF-κB activation in neurons and glial cells. Based on work in animal models, it appears that manipulation of NF-κB signaling may prove valuable in treating such conditions as ischemic stroke, physical trauma to the brain or spinal cord, and neurodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease.

798 citations


Journal ArticleDOI
01 Jun 2001-Cell
TL;DR: It is shown that CMT2A patients contain a loss-of-function mutation in the motor domain of the KIF1B gene, clear indication that defects in axonal transport due to a mutated motor protein can underlie human peripheral neuropathy.

695 citations


Journal ArticleDOI
TL;DR: Evidence is provided for a novel, noninvasive approach for targeting potential therapeutic factors to the central nervous system using genetically-modified hematopoietic cells enter the CNS and differentiate into microglia after bone-marrow transplantation.
Abstract: Gene therapy in the central nervous system (CNS) is hindered by the presence of the blood-brain barrier, which restricts access of serum constituents and peripheral cells to the brain parenchyma. Expression of exogenously administered genes in the CNS has been achieved in vivo using highly invasive routes, or ex vivo relying on the direct implantation of genetically modified cells into the brain. Here we provide evidence for a novel, noninvasive approach for targeting potential therapeutic factors to the CNS. Genetically-modified hematopoietic cells enter the CNS and differentiate into microglia after bone-marrow transplantation. Up to a quarter of the regional microglial population is donor-derived by four months after transplantation. Microglial engraftment is enhanced by neuropathology, and gene-modified myeloid cells are specifically attracted to the sites of neuronal damage. Thus, microglia may serve as vehicles for gene delivery to the nervous system.

621 citations


Journal ArticleDOI
01 Nov 2001-Glia
TL;DR: This review examines the mechanisms and participants in this immunological surveillance mechanism of the central nervous system, and the role in surveillance played by lymphatic drainage, migrating T and B lymphocytes, and elements of the monocyte/macrophage/microglia family are considered.
Abstract: Unlike most bodily organs, the central nervous system (CNS) exists behind a blood-tissue barrier designed to minimize the passage of cells and macromolecules into the neural parenchyma. Yet, the CNS is routinely and effectively surveyed by the immune system. This review examines the mechanisms and participants in this immunological surveillance mechanism. The nature of the healthy blood-brain barrier, factors modifying it, and its central position in determining the number and nature of leukocytes permitted to enter, are considered. In addition the role in surveillance played by lymphatic drainage, migrating T and B lymphocytes, and elements of the monocyte/macrophage/microglia family are considered. While all these participants are known to be important in responding to a CNS antigen and/or establishing a site of inflammation in the nervous system, they also are major elements in maintaining the homeostasis of the CNS and permitting the necessary immunological surveillance of that organ.

478 citations


Journal ArticleDOI
TL;DR: A comparison between the neuroanatomical distribution of the orexin-1 receptor and melanin-concentrating hormone receptor protein-like immunoreactivities in the rat central nervous system is presented, and some functional implications are discussed.

438 citations


Journal ArticleDOI
TL;DR: Long-term expression was observed after gene transfer in the nervous system and a minimal immune response which, together with the possibility of non-invasive administration, greatly extends the utility of lentiviral vectors for gene therapy of human neurological disease.
Abstract: In this report it is demonstrated for the first time that rabies-G envelope of the rabies virus is sufficient to confer retrograde axonal transport to a heterologous virus/vector. After delivery of rabies-G pseudotyped equine infectious anaemia virus (EIAV) based vectors encoding a marker gene to the rat striatum, neurons in regions distal from but projecting to the injection site, such as the dopaminergic neurons of the substantia nigra pars compacta, become transduced. This retrograde transport to appropriate distal neurons was also demonstrated after delivery to substantia nigra, hippocampus and spinal cord and did not occur when vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped vectors were delivered to these sites. In addition, peripheral administration of rabies-G pseudotyped vectors to the rat gastrocnemius muscle leads to gene transfer in motoneurons of lumbar spinal cord. In contrast the same vector pseudotyped with VSV-G transduced muscle cells surrounding the injection site, but did not result in expression in any cells in the spinal cord. Long-term expression was observed after gene transfer in the nervous system and a minimal immune response which, together with the possibility of non-invasive administration, greatly extends the utility of lentiviral vectors for gene therapy of human neurological disease.

Journal ArticleDOI
08 Nov 2001-Nature
TL;DR: It is demonstrated that projection neurons are prespecified by lineage and birth order to form synapses with specific incoming ORN axons, and therefore to carry specific olfactory information, which could be used to hardwire the fly's Olfactory system, enabling stereotyped behavioural responses to odorants.
Abstract: In Drosophila and mice, olfactory receptor neurons (ORNs) expressing the same receptors have convergent axonal projections to specific glomerular targets in the antennal lobe/olfactory bulb, creating an odour map in this first olfactory structure of the central nervous system1,2,3. Projection neurons of the Drosophila antennal lobe send dendrites into glomeruli and axons to higher brain centres4, thereby transferring this odour map further into the brain. Here we use the MARCM method5 to perform a systematic clonal analysis of projection neurons, allowing us to correlate lineage and birth time of projection neurons with their glomerular choice. We demonstrate that projection neurons are prespecified by lineage and birth order to form synapses with specific incoming ORN axons, and therefore to carry specific olfactory information. This prespecification could be used to hardwire the fly's olfactory system, enabling stereotyped behavioural responses to odorants. Developmental studies lead us to hypothesize that recognition molecules ensure reciprocally specific connections of ORNs and projection neurons. These studies also imply a previously unanticipated role for precise dendritic targeting by postsynaptic neurons in determining connection specificity.

Journal ArticleDOI
TL;DR: Future challenges remain not only in identifying all the components of the signalling pathways, but also in understanding how these pathways achieve signal amplification and adaptation—two essential cellular processes for neuronal navigation.
Abstract: Morphogenesis of the nervous system requires the directed migration of postmitotic neurons to designated locations in the nervous system and the guidance of axon growth cones to their synaptic targets. Evidence suggests that both forms of navigation depend on common guidance molecules, surface receptors and signal transduction pathways that link receptor activation to cytoskeletal reorganization. Future challenges remain not only in identifying all the components of the signalling pathways, but also in understanding how these pathways achieve signal amplification and adaptation-two essential cellular processes for neuronal navigation.

Book ChapterDOI
TL;DR: A physiological function of neurosteroids in the central nervous system is strongly suggested by the role of hippocampal PREGS with respect to memory performance, observed in aging rats, and a new mechanism of PREG action discovered in the brain involves specific steroid binding to microtubule associated protein and increased tubulin polymerization for assembling microtubules.
Abstract: Neurosteroids are synthetisized in the central and the peripheral nervous system, in glial cells, and also in neurons, from cholesterol or steroidal precursors imported from peripheral sources. They include 3 beta-hydroxy-delta 5-compounds, such as pregnenolone (PREG) and dehydroepiandrosterone, their sulfate esters, and compounds known as reduced metabolites of steroid hormones, such as the tetrahydroderivative of progesterone 3 alpha-hydroxy-5 alpha-pregnan-20-one. These neurosteroids can act as modulators of neurotransmitter receptors, such as GABAA, NMDA, and sigma 1 receptors. Progesterone itself is also a neurosteroid, and a progesterone receptor has been detected in peripheral and central glial cells. At different sites in the brain, neurosteroid concentrations vary according to environmental and behavioral circumstances, such as stress, sex recognition, or aggressiveness. A physiological function of neurosteroids in the central nervous system is strongly suggested by the role of hippocampal PREGS with respect to memory performance, observed in aging rats. In the peripheral nervous system, a role for PROG synthesized in Schwann cells has been demonstrated in remyelination after cryolesion of the sciatic nerve in vivo and in cultures of dorsal root ganglia. A new mechanism of PREG action discovered in the brain involves specific steroid binding to microtubule associated protein and increased tubulin polymerization for assembling microtubules. It may be important to study the effects of abnormal neurosteroid concentration/metabolism in view of the possible treatment of functional and trophic disturbances of the nervous system.

Journal ArticleDOI
TL;DR: This chapter will review recent advances in the understanding of the pathophysiology of voiding disorders and the targets for drug therapy.
Abstract: The functions of the lower urinary tract, to store and periodically release urine, are dependent on the activity of smooth and striated muscles in the urinary bladder, urethra, and external urethral sphincter. This activity is in turn controlled by neural circuits in the brain, spinal cord, and peripheral ganglia. Various neurotransmitters, including acetylcholine, norepinephrine, dopamine, serotonin, excitatory and inhibitory amino acids, adenosine triphosphate, nitric oxide, and neuropeptides, have been implicated in the neural regulation of the lower urinary tract. Injuries or diseases of the nervous system, as well as drugs and disorders of the peripheral organs, can produce voiding dysfunctions such as urinary frequency, urgency, and incontinence or inefficient voiding and urinary retention. This chapter will review recent advances in our understanding of the pathophysiology of voiding disorders and the targets for drug therapy.

Journal ArticleDOI
TL;DR: It is shown that although specific epithelial progenitors respond to GLP-2 administration, the epithelium does not express the GLp-2 receptor, and the nervous system is a key component of a feedback loop regulating epithelial growth and repair.
Abstract: The proglucagon-derived peptide glucagon-like peptide 2 (GLP-2), a product of a subset of gut epithelial cells, is pursued clinically for its ability to stimulate gut epithelial growth and repair. Here we show that although specific epithelial progenitors respond to GLP-2 administration, the epithelium does not express the GLP-2 receptor. Rather, enteric neurons express the receptor, respond to GLP-2, and transmit a signal (which can be blocked by the voltage-gated sodium channel inhibitor tetrodotoxin) back to the epithelium. Thus the nervous system is a key component of a feedback loop regulating epithelial growth and repair.

Journal ArticleDOI
TL;DR: It is reported that inner ear sensory neurons are dependent on a basic helix-loop-helix transcription factor called NeuroD for survival during differentiation, and mice lacking NeuroD protein exhibit no auditory evoked potentials, reflecting a profound deafness.
Abstract: A key factor in the genetically programmed development of the nervous system is the death of massive numbers of neurons. Therefore, genetic mechanisms governing cell survival are of fundamental importance to developmental neuroscience. We report that inner ear sensory neurons are dependent on a basic helix-loop-helix transcription factor called NeuroD for survival during differentiation. Mice lacking NeuroD protein exhibit no auditory evoked potentials, reflecting a profound deafness. DiI fiber staining, immunostaining and cell death assays reveal that the deafness is due to the failure of inner ear sensory neuron survival during development. The affected inner ear sensory neurons fail to express neurotrophin receptors, TrkB and TrkC, suggesting that the ability of NeuroD to support neuronal survival may be directly mediated through regulation of responsiveness to the neurotrophins.

Journal ArticleDOI
01 Apr 2001-Neuron
TL;DR: This work reports a quantal increase in the attention afforded stem cells, in both the scientific and lay communities, recently, and what accounts for this heightened level of interest.

Journal ArticleDOI
TL;DR: Capsids accumulated at axon terminals, suggesting that spread from infected neurons required cell contact, and the observed movement was compatible with fast axonal flow mediated by multiple microtubule motors.
Abstract: Alpha herpesviruses infect the vertebrate nervous system resulting in either mild recurrent lesions in mucosal epithelia or fatal encephalitis. Movement of virions within the nervous system is a critical factor in the outcome of infection; however, the dynamics of individual virion transport have never been assessed. Here we visualized and tracked individual viral capsids as they moved in axons away from infected neuronal cell bodies in culture. The observed movement was compatible with fast axonal flow mediated by multiple microtubule motors. Capsids accumulated at axon terminals, suggesting that spread from infected neurons required cell contact.

Journal ArticleDOI
TL;DR: The biochemistry of the enzymes involved in the biosynthesis of neurosteroids, their localization during development and in the adult, and the regulation of their expression are summarized, highlighting both similarities and differences between expression in the brain and in classic steroidogenic tissues.

Journal ArticleDOI
TL;DR: It is shown that expression of these subunits in this circuit is differentially regulated by the homeodomain protein UNC-42 and that UNC- 42 is also required for axonal pathfinding of neurons in the circuit.
Abstract: In almost all nervous systems, rapid excitatory synaptic communication is mediated by a diversity of ionotropic glutamate receptors. In Caenorhabditis elegans, 10 putative ionotropic glutamate receptor subunits have been identified, a surprising number for an organism with only 302 neurons. Sequence analysis of the predicted proteins identified two NMDA and eight non-NMDA receptor subunits. Here we describe the complete distribution of these subunits in the nervous system of C. elegans. Receptor subunits were found almost exclusively in interneurons and motor neurons, but no expression was detected in muscle cells. Interestingly, some neurons expressed only a single subunit, suggesting that these may form functional homomeric channels. Conversely, interneurons of the locomotory control circuit (AVA, AVB, AVD, AVE, and PVC) coexpressed up to six subunits, suggesting that these subunits interact to generate a diversity of heteromeric glutamate receptor channels that regulate various aspects of worm movement. We also show that expression of these subunits in this circuit is differentially regulated by the homeodomain protein UNC-42 and that UNC-42 is also required for axonal pathfinding of neurons in the circuit. In wild-type worms, the axons of AVA, AVD, and AVE lie in the ventral cord, whereas in unc-42 mutants, the axons are anteriorly, laterally, or dorsally displaced, and the mutant worms have sensory and locomotory defects.

Journal ArticleDOI
TL;DR: This review explores how proprioceptive sensory information is organized at spinal cord levels as it relates to a sense of body position and movement and develops a different framework that may be more in tune with current views of sensorimotor processing in other central nervous system structures.
Abstract: This review explores how proprioceptive sensory information is organized at spinal cord levels as it relates to a sense of body position and movement. The topic is considered in an historical context and develops a different framework that may be more in tune with current views of sensorimotor processing in other central nervous system structures. The dorsal spinocerebellar tract (DSCT) system is considered in detail as a model system that may be considered as an end point for the processing of proprioceptive sensory information in the spinal cord. An analysis of this system examines sensory processing at the lowest levels of synaptic connectivity with central neurons in the nervous system. The analysis leads to a framework for proprioception that involves a highly flexible network organization based in some way on whole limb kinematics. The functional organization underlying this framework originates with the biomechanical linkages in the limb that establish functional relationships among the limb segments. Afferent information from limb receptors is processed further through a distributed neural network in the spinal cord. The result is a global representation of hindlimb parameters rather than a muscle-by-muscle or joint-by-joint representation.

Patent
11 Nov 2001
TL;DR: A neurological control system for modulating activity of any component or structure comprising the entirety or portion of the nervous system, or any structure interfaced thereto, generally referred to herein as a “nervous system component,” is described in this article.
Abstract: A neurological control system for modulating activity of any component or structure comprising the entirety or portion of the nervous system, or any structure interfaced thereto, generally referred to herein as a “nervous system component.” The neurological control system generates neural modulation signals delivered to a nervous system component through one or more intracranial (IC) stimulating electrodes in accordance with treatment parameters. Such treatment parameters may be derived from a neural response to previously delivered neural modulation signals sensed by one or more sensors, each configured to sense a particular characteristic indicative of a neurological or psychiatric condition. Neural modulation signals include any control signal which enhances or inhibits cell activity. Significantly the neurological control system considers neural response, in the form of the sensory feedback, as an indication of neurological disease state and/or responsiveness to therapy, in the determination of treatment parameters.

Journal ArticleDOI
TL;DR: Mice homozygous for this mutation lack both protein isoforms, display severe nervous system defects and reveal a previously unknown role of p75NTR in the formation of blood vessels.
Abstract: We identified a protein isoform of the common neurotrophin receptor p75NTR that arises from alternative splicing of exon III in the p75NTR locus. Because this protein is left intact in the previously described p75NTR mutant mouse line1, we generated a new p75NTR mutant allele. Mice homozygous for this mutation lack both protein isoforms, display severe nervous system defects and reveal a previously unknown role of p75NTR in the formation of blood vessels.

Journal ArticleDOI
TL;DR: Results clearly indicate a wide area- and cell-specific variation of cation chloride cotransporters, emphasizing the central role of anionic homeostasis in neuronal function and communication.

Journal ArticleDOI
TL;DR: This work has identified two early differentiating populations of midline glial cells that may act as intermediate guideposts for callosal axons and identified one possible candidate for this activity because both glial populations express the chemorepellent molecule slit-2, and cortical axons express theslit-2 receptors robo-1 androbo-2.
Abstract: Growing axons are often guided to their final destination by intermediate targets. In the developing spinal cord and optic nerve, specialized cells at the embryonic midline act as intermediate targets for guiding commissural axons. Here we investigate whether similar intermediate targets may play a role in guiding cortical axons in the developing brain. During the development of the corpus callosum, cortical axons from one cerebral hemisphere cross the midline to reach their targets in the opposite cortical hemisphere. We have identified two early differentiating populations of midline glial cells that may act as intermediate guideposts for callosal axons. The first differentiates directly below the corpus callosum forming a wedge shaped structure (the glial wedge) and the second differentiates directly above the corpus callosum within the indusium griseum. Axons of the corpus callosum avoid both of these populations in vivo. This finding is recapitulated in vitro in three-dimensional collagen gels. In addition, experimental manipulations in organotypic slices show that callosal axons require the presence and correct orientation of these populations to turn toward the midline. We have also identified one possible candidate for this activity because both glial populations express the chemorepellent molecule slit-2, and cortical axons express the slit-2 receptors robo-1 and robo-2. Furthermore, slit-2 repels-suppresses cortical axon growth in three-dimensional collagen gel cocultures.

Journal ArticleDOI
TL;DR: The results suggest that brain stem sensory pathways may differ in their principles of integration compared with cortical models and that this importantly impacts synaptic performance, and that jitter and not absolute latency or failure rate is the most reliable discriminator of mono- versus polysynaptic pathways.
Abstract: The timing of events within the nervous system is a critical feature of signal processing and integration. In neurotransmission, the synaptic latency, the time between stimulus delivery and appeara...

Journal ArticleDOI
TL;DR: In this article, the role of injury site relative to the dorsal root ganglion (DRG) in eliciting behavioral responses, inducing spinal neuroimmune activation, and responding to pharmacologic interventions was investigated.
Abstract: The specific mechanisms by which nervous system injury becomes a chronic pain state remain undetermined. Historically, it has been believed that injuries proximal or distal to the dorsal root ganglion (DRG) produce distinct pathologies that manifest in different severity of symptoms. This study investigated the role of injury site relative to the DRG in (1) eliciting behavioral responses, (2) inducing spinal neuroimmune activation, and (3) responding to pharmacologic interventions. Rats received either an L5 spinal nerve transection distal to the DRG or an L5 nerve root injury proximal to the DRG. Comparative studies assessed behavioral nociceptive responses, spinal cytokine mRNA and protein expression, and glial activation after injury. In separate studies, intrathecal pharmacologic interventions by using selective cytokine antagonists (interleukin-1 [IL-1] receptor antagonist and soluble tumor necrosis factor [TNF] receptor) and a global immunosuppressant (leflunomide) were performed to determine their relative effectiveness in these injury paradigms. Behavioral responses assessed by mechanical allodynia and thermal hyperalgesia were almost identical in the two models of persistent pain, suggesting that behavioral testing may not be a sensitive measure of injury. Spinal IL-1beta, IL-6, IL-10, and TNF mRNA and IL-6 protein were significantly elevated in both injuries. The overall magnitude of expression and temporal patterns were similar in both models of injury. The degree of microglial and astrocytic activation in the L5 spinal cord was also similar for both injuries. In contrast, the pharmacologic treatments were more effective in alleviating mechanical allodynia for peripheral nerve injury than nerve root injury, suggesting that nerve root injury elicits a more robust, centrally mediated response than peripheral nerve injury. Overall, these data implicate alternate nociceptive mechanisms in these anatomically different injuries that are not distinguished by behavioral testing or the neuroimmune markers used in this study.

Journal ArticleDOI
TL;DR: The data suggest that, in this scrapie model, the infectious agent primarily uses synaptically linked autonomic ganglia and efferent fibers of the vagus and splanchnic nerves to invade initial target sites in the brain and spinal cord.
Abstract: Although the ultimate target of infection is the central nervous system (CNS), there is evidence that the enteric nervous system (ENS) and the peripheral nervous system (PNS) are involved in the pathogenesis of orally communicated transmissible spongiform encephalopathies. In several peripherally challenged rodent models of scrapie, spread of infectious agent to the brain and spinal cord shows a pattern consistent with propagation along nerves supplying the viscera. We used immunocytochemistry (ICC) and paraffin-embedded tissue (PET) blotting to identify the location and temporal sequence of pathological accumulation of a host protein, PrP, in the CNS, PNS, and ENS of hamsters orally infected with the 263K scrapie strain. Enteric ganglia and components of splanchnic and vagus nerve circuitry were examined along with the brain and spinal cord. Bioassays were carried out with selected PNS constituents. Deposition of pathological PrP detected by ICC was consistent with immunostaining of a partially protease-resistant form of PrP (PrPSc) in PET blots. PrPSc could be observed from approximately one-third of the way through the incubation period in enteric ganglia and autonomic ganglia of splanchnic or vagus circuitry prior to sensory ganglia. PrPSc accumulated, in a defined temporal sequence, in sites that accurately reflected known autonomic and sensory relays. Scrapie agent infectivity was present in the PNS at low or moderate levels. The data suggest that, in this scrapie model, the infectious agent primarily uses synaptically linked autonomic ganglia and efferent fibers of the vagus and splanchnic nerves to invade initial target sites in the brain and spinal cord.

Journal ArticleDOI
TL;DR: This study combines single-cell dye labeling of individual synaptic boutons and counterstaining of the entire nervous system to characterize the synaptic partners and bouton differentiation of the 30 motoneuron axons from four nerve branches of Drosophila.