scispace - formally typeset
Search or ask a question
Topic

Nervous system

About: Nervous system is a research topic. Over the lifetime, 16729 publications have been published within this topic receiving 847181 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Gfi1 is expressed in the developing nervous system, is required for inner ear hair cell differentiation, and its loss causes programmed cell death.
Abstract: Gfi1 was first identified as causing interleukin 2-independent growth in T cells and lymphomagenesis in mice. Much work has shown that Gfi1 and Gfi1b, a second mouse homolog, play pivotal roles in blood cell lineage differentiation. However, neither Gfi1 nor Gfi1b has been implicated in nervous system development, even though their invertebrate homologues, senseless in Drosophila and pag-3 in C. elegans are expressed and required in the nervous system. We show that Gfi1 mRNA is expressed in many areas that give rise to neuronal cells during embryonic development in mouse, and that Gfi1 protein has a more restricted expression pattern. By E12.5 Gfi1 mRNA is expressed in both the CNS and PNS as well as in many sensory epithelia including the developing inner ear epithelia. At later developmental stages, Gfi1 expression in the ear is refined to the hair cells and neurons throughout the inner ear. Gfi1 protein is expressed in a more restricted pattern in specialized sensory cells of the PNS, including the eye, presumptive Merkel cells, the lung and hair cells of the inner ear. Gfi1 mutant mice display behavioral defects that are consistent with inner ear anomalies, as they are ataxic, circle, display head tilting behavior and do not respond to noise. They have a unique inner ear phenotype in that the vestibular and cochlear hair cells are differentially affected. Although Gfi1-deficient mice initially specify inner ear hair cells, these hair cells are disorganized in both the vestibule and cochlea. The outer hair cells of the cochlea are improperly innervated and express neuronal markers that are not normally expressed in these cells. Furthermore, Gfi1 mutant mice lose all cochlear hair cells just prior to and soon after birth through apoptosis. Finally, by five months of age there is also a dramatic reduction in the number of cochlear neurons. Hence, Gfi1 is expressed in the developing nervous system, is required for inner ear hair cell differentiation, and its loss causes programmed cell death.

247 citations

Journal ArticleDOI
TL;DR: Evidence is given for bidirectional communication between brain and WAT occurring via the sympathetic nervous system (SNS) and sensory innervation of this tissue and a possible neural negative feedback loop to regulate lipolysis.

247 citations

Journal ArticleDOI
01 Jul 2002-Gut
TL;DR: It is likely that vagal and splanchnic afferents play different roles in mediating sensation because of the different response profiles following activation of these pathways.
Abstract: Afferent fibres convey sensory information from the upper gastrointestinal tract to the central nervous system but the nature of this information is different for vagal and spinal pathways. Vagal afferents convey predominantly physiological information while spinal afferents are able to encode noxious events. Because of the different response profiles following activation of these pathways, it is likely that vagal and splanchnic afferents play different roles in mediating sensation.

246 citations

Journal ArticleDOI
09 Oct 2003-Neuron
TL;DR: Evidence indicating that glial cells make important contributions to synaptic function is discussed, including the capacity of certain glia to respond to and modulate neurotransmission.

246 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Disease
47.9K papers, 1.8M citations
81% related
Dopamine
45.7K papers, 2.2M citations
80% related
Embryonic stem cell
35.1K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023247
2022510
2021371
2020409
2019375
2018357