scispace - formally typeset
Search or ask a question
Topic

Nervous system

About: Nervous system is a research topic. Over the lifetime, 16729 publications have been published within this topic receiving 847181 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system is presented and it is suggested that similar circuit mechanisms may operate in other species and sensory systems.
Abstract: Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective reduction of response to this odorant. Both short-term (STH) and long-term (LTH) forms of olfactory habituation require function of the rutabaga-encoded adenylate cyclase in multiglomerular local interneurons (LNs) that mediate GABAergic inhibition in the antennal lobe; LTH additionally requires function of the cAMP response element-binding protein (CREB2) transcription factor in LNs. The odorant selectivity of STH and LTH is mirrored by requirement for NMDA receptors and GABAA receptors in odorant-selective, glomerulus-specific projection neurons(PNs). The need for the vesicular glutamate transporter in LNs indicates that a subset of these GABAergic neurons also releases glutamate. LTH is associated with a reduction of odorant-evoked calcium fluxes in PNs as well as growth of the respective odorant-responsive glomeruli. These cellular changes use similar mechanisms to those required for behavioral habituation. Taken together with the observation that enhancement of GABAergic transmission is sufficient to attenuate olfactory behavior, these data indicate that habituation arises from glomerulus-selective potentiation of inhibitory synapses in the antennal lobe. We suggest that similar circuit mechanisms may operate in other species and sensory systems.

189 citations

Journal ArticleDOI
TL;DR: Support is presented for an interaction between 440-kD ankyrinB and L1 that is essential for maintenance of premyelinated axons in vivo and provides the first evidence for a role of ankyr inB in the nervous system.
Abstract: The L1 CAM family of cell adhesion molecules and the ankyrin family of spectrin-binding proteins are candidates to collaborate in transcellular complexes used in diverse contexts in nervous systems of vertebrates and invertebrates. This report presents evidence for functional coupling between L1 and 440-kD ankyrinB in premyelinated axons in the mouse nervous system. L1 and 440-kD ankyrinB are colocalized in premyelinated axon tracts in the developing nervous system and are both down-regulated after myelination. AnkyrinB (−/−) mice exhibit a phenotype similar to, but more severe, than L1 (−/−) mice and share features of human patients with L1 mutations. AnkyrinB (−/−) mice exhibit hypoplasia of the corpus callosum and pyramidal tracts, dilated ventricles, and extensive degeneration of the optic nerve, and they die by postnatal day 21. AnkyrinB (−/−) mice have reduced L1 in premyelinated axons of long fiber tracts, including the corpus callosum, fimbria, and internal capsule in the brain, and pyramidal tracts and lateral columns of the spinal cord. L1 was evident in the optic nerve at postnatal day 1 but disappeared by postnatal day 7 in mutant mice while NCAM was unchanged. Optic nerve axons of ankyrinB (−/−) mice become dilated with diameters up to eightfold greater than normal, and they degenerated by day 20. These findings provide the first evidence for a role of ankyrinB in the nervous system and support an interaction between 440-kD ankyrinB and L1 that is essential for maintenance of premyelinated axons in vivo.

189 citations

Journal ArticleDOI
TL;DR: This article used ultrasound image-guided injections of high-titer retroviral vectors to obtain widespread introduction of genes into the mouse nervous system in utero as early as embryonic day 8.5 (E8.5).
Abstract: We used ultrasound image-guided injections of high-titer retroviral vectors to obtain widespread introduction of genes into the mouse nervous system in utero as early as embryonic day 8.5 (E8.5). The vectors used included internal promoters that substantially improved proviral gene expression in the ventricular zone of the brain. To demonstrate the utility of this system, we extended our previous work in vitro by infecting the telencephalon in vivo as early as E8.5 with a virus expressing Sonic Hedgehog. Infected embryos showed gross morphological brain defects, as well as ectopic expression of ventral telencephalic markers characteristic of either the medial or lateral ganglionic eminences.

189 citations

Journal ArticleDOI
01 Nov 2006-Gut
TL;DR: The role of the SNS for gut inflammation is compared with its role in rheumatoid arthritis which demonstrates notable similarities and attempts to integrate the different perspectives of the pro- and anti-inflammatory effects of theSNS on inflammatory disease of the gut.
Abstract: The nervous system in the intestine controls motility, secretion, sensory perception, and immune function. Peptidergic neurones with neurotransmitters such as substance P and nerve growth factors have been the main focus of neuroimmunomodulation research in the gut. This review summarises the present knowledge concerning the role of the sympathetic nervous system (SNS) in modulating intestinal inflammation. The role of the SNS for gut inflammation is compared with its role in rheumatoid arthritis which demonstrates notable similarities. Nerve fibres of the SNS not only enter the enteric plexuses but also innervate the mucosa and gut associated lymphoid tissue (GALT). The SNS has pro- and anti-inflammatory functions. Neurotransmitters such as norepinephrine, adenosine, and others can evoke remarkably different opposing effects depending on concentration (presence of sympathetic nerve fibres and extent of neurotransmitter release), receptor affinity at different receptor subtypes, expression of adrenoceptors, availability of cotransmitters, and timing of SNS activity in relation to the inflammatory course. This review attempts to integrate the different perspectives of the pro- and anti-inflammatory effects of the SNS on inflammatory disease of the gut.

188 citations

Journal ArticleDOI
TL;DR: It is proposed that the perineural niche should be considered part of the tumour microenvironment, describe the molecular cues that facilitate neural tracking and suggest methods for its inhibition.
Abstract: The local extension of cancer cells along nerves is a frequent clinical finding for various tumours. Traditionally, nerve invasion was assumed to occur via the path of least resistance; however, recent animal models and human studies have revealed that cancer cells have an innate ability to actively migrate along axons in a mechanism called neural tracking. The tendency of cancer cells to track along nerves is supported by various cell types in the perineural niche that secrete multiple growth factors and chemokines. We propose that the perineural niche should be considered part of the tumour microenvironment, describe the molecular cues that facilitate neural tracking and suggest methods for its inhibition.

188 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Disease
47.9K papers, 1.8M citations
81% related
Dopamine
45.7K papers, 2.2M citations
80% related
Embryonic stem cell
35.1K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023247
2022510
2021371
2020409
2019375
2018357