scispace - formally typeset
Search or ask a question
Topic

Nervous system

About: Nervous system is a research topic. Over the lifetime, 16729 publications have been published within this topic receiving 847181 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The data described here strongly suggest that RA could be used as a therapeutic molecule for the induction of axon regeneration and the treatment of neurodegeneration.
Abstract: Retinoic acid (RA) is involved in the induction of neural differentiation, motor axon outgrowth and neural patterning. Like other developmental molecules, RA continues to play a role after development has been completed. Elevated RA signalling in the adult triggers axon outgrowth and, consequently, nerve regeneration. RA is also involved in the maintenance of the differentiated state of adult neurons, and disruption of RA signalling in the adult leads to the degeneration of motor neurons (motor neuron disease), the development of Alzheimer's disease and, possibly, the development of Parkinson's disease. The data described here strongly suggest that RA could be used as a therapeutic molecule for the induction of axon regeneration and the treatment of neurodegeneration.

801 citations

Journal ArticleDOI
TL;DR: The present review outlines the methods used to discover, define and describe zinc-containing neurons; the neuroarchitecture and synaptology of zinc- containing neural circuits; the physiology of regulated vesicular zinc release; the "life cycle" and molecular biology of vesicle zinc; the importance of synaptically released zinc in the normal and pathological processes of the cerebral cortex; and the role of specific and nonspecific stressors in the release of zinc.
Abstract: Zinc is essential to the structure and function of myriad proteins, including regulatory, structural and enzymatic. It is estimated that up to 1% of the human genome codes for zinc finger proteins. In the central nervous system, zinc has an additional role as a neurosecretory product or cofactor. In this role, zinc is highly concentrated in the synaptic vesicles of a specific contingent of neurons, called "zinc-containing" neurons. Zinc-containing neurons are a subset of glutamatergic neurons. The zinc in the vesicles probably exceeds 1 mmol/L in concentration and is only weakly coordinated with any endogenous ligand. Zinc-containing neurons are found almost exclusively in the forebrain, where in mammals they have evolved into a complex and elaborate associational network that interconnects most of the cerebral cortices and limbic structures. Indeed, one of the intriguing aspects of these neurons is that they compose somewhat of a chemospecific "private line" of the mammalian cerebral cortex. The present review outlines (1) the methods used to discover, define and describe zinc-containing neurons; (2) the neuroarchitecture and synaptology of zinc-containing neural circuits; (3) the physiology of regulated vesicular zinc release; (4) the "life cycle" and molecular biology of vesicular zinc; (5) the importance of synaptically released zinc in the normal and pathological processes of the cerebral cortex; and (6) the role of specific and nonspecific stressors in the release of zinc.

800 citations

Journal ArticleDOI
TL;DR: The general properties, expression and recognition of these cytokines with respect to the nervous system are discussed.

799 citations

Journal ArticleDOI
TL;DR: Based on work in animal models, it appears that manipulation of NF-κB signaling may prove valuable in treating such conditions as ischemic stroke, physical trauma to the brain or spinal cord, and neurodegenerative disorders, including Alzheimer's disease and Parkinson’s disease.
Abstract: NF-κB is widely known for its ubiquitous roles in inflammation and immune responses, as well as in control of cell division and apoptosis. These roles are apparent in the nervous system, but neurons and their neighboring cells employ the NF-κB pathway for distinctive functions as well, ranging from development to the coordination of cellular responses to injury of the nervous system and to brain-specific processes such as the synaptic signaling that underlies learning and memory. Here we discuss the regulation of NF-κB activity by neurotransmitters and neurotrophic factors and the physiological and pathological effects of NF-κB activation in neurons and glial cells. Based on work in animal models, it appears that manipulation of NF-κB signaling may prove valuable in treating such conditions as ischemic stroke, physical trauma to the brain or spinal cord, and neurodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease.

798 citations

Journal ArticleDOI
TL;DR: An important direction for ongoing research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, but are also able to modulate central nervous system reorganization, amplifying those positive adaptive changes that help to improve functional recovery but also diminishing undesirable consequences.

787 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Disease
47.9K papers, 1.8M citations
81% related
Dopamine
45.7K papers, 2.2M citations
80% related
Embryonic stem cell
35.1K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023247
2022510
2021371
2020409
2019375
2018357