scispace - formally typeset
Search or ask a question
Topic

Nervous system

About: Nervous system is a research topic. Over the lifetime, 16729 publications have been published within this topic receiving 847181 citations.


Papers
More filters
Book ChapterDOI
TL;DR: All organisms with a complex nervous system have a well-developed blood-central nervous system barrier and in the vertebrates the central nervous system lies behind the protective blood-brain barrier and blood-cerebrospinal fluid barrier.
Abstract: All organisms with a complex nervous system have a well-developed blood-central nervous system barrier. In the vertebrates the central nervous system (CNS) lies behind the protective blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). In all mammals the BBB is formed at the level of the cerebral capillary endothelial cells and the BCSFB by the choroid plexus epithelium.

420 citations

Journal ArticleDOI
TL;DR: This work has shown that the high excitability of recurrently connected, developing networks and the presence of activity-induced transient depression of network excitability in the spinal cord is of particular importance for spontaneous, periodic activity in mice.

419 citations

Journal ArticleDOI
TL;DR: This review aims to summarize various ways peripheral nerve injuries are classified in light of decades of research on peripheral nerve injury and regeneration.

419 citations

Journal ArticleDOI
29 Jul 1993-Nature
TL;DR: It is reported here that SNAP-25 is expressed in axonal growth cones during late stages of elongation and that selective inhibition of SNAP- 25 expression prevents neurite elongation by rat cortical neurons and PC-12 cells in vitro and by amacrine cells of the developing chick retina in vivo.
Abstract: Axonal elongation and the transformation of growth cones to synaptic terminals are major steps of brain development and the molecular mechanisms involved form the basis of the correct wiring of the nervous system. The same mechanisms may also contribute to the remodelling of nerve terminals that occurs in the adult brain, as a morphological substrate to memory and learning. We have investigated the function of the nerve terminal protein SNAP-25 (ref. 2) during development. We report here that SNAP-25 is expressed in axonal growth cones during late stages of elongation and that selective inhibition of SNAP-25 expression prevents neurite elongation by rat cortical neurons and PC-12 cells in vitro and by amacrine cells of the developing chick retina in vivo. These results demonstrate that SNAP-25 plays a key role in axonal growth. They also suggest that high levels of SNAP-25 expression in specific areas of the adult brain may contribute to nerve terminal plasticity.

419 citations

Journal ArticleDOI
TL;DR: These findings provide the first evidence that DAGLα is the major biosynthetic enzyme for 2-AG in the nervous system and reveal an essential role for this enzyme in regulating retrograde synaptic plasticity and adult neurogenesis.
Abstract: Endocannabinoids (eCBs) function as retrograde signaling molecules at synapses throughout the brain, regulate axonal growth and guidance during development, and drive adult neurogenesis. There remains a lack of genetic evidence as to the identity of the enzyme(s) responsible for the synthesis of eCBs in the brain. Diacylglycerol lipase-alpha (DAGLalpha) and -beta (DAGLbeta) synthesize 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain. However, their respective contribution to this and to eCB signaling has not been tested. In the present study, we show approximately 80% reductions in 2-AG levels in the brain and spinal cord in DAGLalpha(-/-) mice and a 50% reduction in the brain in DAGLbeta(-/-) mice. In contrast, DAGLbeta plays a more important role than DAGLalpha in regulating 2-AG levels in the liver, with a 90% reduction seen in DAGLbeta(-/-) mice. Levels of arachidonic acid decrease in parallel with 2-AG, suggesting that DAGL activity controls the steady-state levels of both lipids. In the hippocampus, the postsynaptic release of an eCB results in the transient suppression of GABA-mediated transmission at inhibitory synapses; we now show that this form of synaptic plasticity is completely lost in DAGLalpha(-/-) animals and relatively unaffected in DAGLbeta(-/-) animals. Finally, we show that the control of adult neurogenesis in the hippocampus and subventricular zone is compromised in the DAGLalpha(-/-) and/or DAGLbeta(-/-) mice. These findings provide the first evidence that DAGLalpha is the major biosynthetic enzyme for 2-AG in the nervous system and reveal an essential role for this enzyme in regulating retrograde synaptic plasticity and adult neurogenesis.

418 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Disease
47.9K papers, 1.8M citations
81% related
Dopamine
45.7K papers, 2.2M citations
80% related
Embryonic stem cell
35.1K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023247
2022510
2021371
2020409
2019375
2018357