scispace - formally typeset
Search or ask a question
Topic

Nervous system

About: Nervous system is a research topic. Over the lifetime, 16729 publications have been published within this topic receiving 847181 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Current knowledge about the role of m TOR in the physiology and pathology of the nervous system is presented, with special focus on molecular targets acting downstream of mTOR that potentially contribute to neuronal development, plasticity and neuropathology.

325 citations

Journal ArticleDOI
09 Oct 2003-Neuron
TL;DR: Dendrite development is an important and unsolved problem in neuroscience and recent progress has begun to shed light on the molecular mechanisms that orchestrate dendrite growth, arborization, and guidance.

324 citations

Journal ArticleDOI
01 Dec 2000-Gut
TL;DR: The enteric nervous system (ENS) is a quasi autonomous part of the nervous system and includes a number of neural circuits that control motor functions, local blood flow, mucosal transport and secretions, and modulates immune and endocrine functions.
Abstract: The enteric nervous system (ENS) is a quasi autonomous part of the nervous system and includes a number of neural circuits that control motor functions, local blood flow, mucosal transport and secretions, and modulates immune and endocrine functions. Although these functions operate in concert and are functionally interlinked, it is useful to consider the neural circuits involved in each separately.1 This short summary will concentrate mainly on the neural circuits involved in motor control.2 The enteric neural circuits are composed of enteric neurones arranged in networks of enteric ganglia connected by interganglionic strands. Most enteric neurones involved in motor functions are located in the myenteric plexus with some primary afferent neurones located in the submucous plexus. As in all nervous systems involved in sensory-motor control, the ENS comprises primary afferent neurones, sensitive to chemical and mechanical stimuli, interneurones and motorneurones that act on the different effector cells including smooth muscle, pacemaker cells, blood vessels, mucosal glands, and epithelia, and the distributed system of intestinal cells involved in immune responses and endocrine and paracrine functions. The digestive tract is unique among internal organs because it is exposed to a large variety of physicochemical stimuli from the external world in the form of ingested food. As a consequence, the intestine has developed a rich repertoire of coordinated movements of its muscular apparatus to ensure the appropriate mixing and propulsion of contents during digestion, absorption, and excretion. The oro-aboral transit of the intestinal contents can be regarded as a form of adaptive locomotion that occurs over a wide range of spatial and temporal domains.3 The movements of the intestine are the result of interaction of the neural apparatus and the muscular apparatus.4 The muscular apparatus is organised in muscle layers made up of large collections of smooth muscle cells …

324 citations

Journal ArticleDOI
TL;DR: The present study attempted to examine immunohistochemically the distribution of μ‐opioid receptors in the rat central nervous system with two kinds of antibodies to recently cloned μ‐operative receptors (MOR1 and MOR1B).
Abstract: Of the three major types of opioid receptors ( mu, delta, kappa) in the nervous system, mu-opioid receptor shows the highest affinity for morphine that exerts powerful effects on nociceptive, autonomic, and psychological functions. So far, at least two isoforms of mu-opioid receptors have been cloned from rat brain. The present study attempted to examine immunohistochemically the distribution of mu-opioid receptors in the rat central nervous system with two kinds of antibodies to recently cloned mu-opioid receptors (MOR1 and MOR1B). One antibody recognized a specific site for MOR1, and the other bound to a common site for MOR1 and MOR1B. Intense MOR1-like immunoreactivity (LI) was seen in the 'patch' areas and subcallosal streak in the striatum, medial habenular nucleus, medial terminal nucleus of the accessory optic tract, interpeduncular nucleus, median raphe nucleus, parabrachial nuclei, locus coeruleus, ambiguous nucleus, nucleus of the solitary tract, and laminae I and II of the medullary and spinal dorsal horns. Many other regions, including the cerebral cortex, amygdala, thalamus, and hypothalamus, also contained many neuronal elements with MOR1-LI. The distribution pattern of the immunoreactivity revealed with the antibody to the common site for MOR1 and MOR1B (MOR1/1B-LI) was almost the same as that of MOR1-LI. Both MOR1-LI and MOR1/1B-LI were primarily located in neuronal cell bodies and dendrites. However, the immunoreactivities were observed in the accessory optic tract, fasciculus retroflexus, solitary tract, and primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns. The presynaptic location of MOR1-LI and MOR1/1B-LI was confirmed by lesion experiments: Enucleation, placing a lesion in the medial habenular nucleus, removal of the nodose ganglion, or dorsal rhizotomy resulted in a clear reduction of the immunoreactivities, respectively, in the nuclei of the accessory optic tract, some subnuclei of the interpeduncular nucleus, nucleus of the solitary tract, or laminae I and II of the spinal dorsal horn. The results indicate that the mu-opioid receptors are widely distributed in the brain and spinal cord, mainly postsynaptically and occasionally presynaptically. Opioids, including morphine, may inhibit the excitation of neurons via the postsynaptic mu-opioid receptors, and also suppress the release of neurotransmitters and/or neuromodulators from axon terminals through the presynaptic mu-opioid receptors.

324 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Disease
47.9K papers, 1.8M citations
81% related
Dopamine
45.7K papers, 2.2M citations
80% related
Embryonic stem cell
35.1K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023247
2022510
2021371
2020409
2019375
2018357